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Preface

This book has been written as a practical guide to the problems that are commonly
encountered when using datums and map projections. It is aimed at students and
practitioners in the areas of remote sensing, geographic information systems, and
surveying.

Several trends in recent years have been responsible for bringing the importance
of datums and projections to the attention of a wider community of users. One has
been the development of new methods of acquiring spatial data, such as the global
positioning system and satellite remote sensing. Another has been the introduction
of geographic information systems for handling and manipulating data in digital form.
Taken together, these have brought about a situation where users are no longer reliant
on paper maps provided by a single source, but can acquire and customise spatial
data as their needs dictate. To assure the quality of the products derived from these
processes, it is essential that the diverse coordinate frameworks upon which the data
are based should be fully understood.

This book is for users with different levels of background knowledge of the sub-
ject, and therefore provides some fundamental definitions as well as more detailed
explanations. The emphasis throughout is placed upon the solution of practical prob-
lems, giving alternatives where standard procedures may not be adequate, and giving
worked examples and appendices with useful formulae.

Those dipping into the book to find answers to specific queries on transforming
data will find a “route diagram” of different transformations and procedures in Chap-
ter 1, which gives a reference to where more complete descriptions and formulae can
be found. Three chapters then follow on different types of coordinate systems and
datums: Chapter 2 considers two- and three-dimensional representations of Earth
coordinates; Chapter 3 looks at vertical datums; and Chapter 4 explores the ways in
which datums are established on a global, regional, or local basis.

Chapter 5 gives an introduction to the global positioning system, and explores the
problems that can arise with datums when using this. Chapters 7 to 1 1 introduce the
fundamentals of map projections, and look at the different types in some detail. Models
and procedures for transforming directly between data sets, based on the identifica-
tion of common points, are treated in Chapter 12.




viii

Chapter 13 introduces several practical projects in the form of case studies, which
together illustrate the range of problems that may be encountered when working with
data sets on different datums or when attempting to carry out computations in pro-
jected coordinate systems.

Finally, T should like to place on record my gratitude to many colleagues in the
Department of Geomatic Engineering at University College London for the assist-
ance that they have given me in writing this book. To Paul Cross, lan Dowman,
Arthur Allan, John Arthur, David Chapman, and Joel Bames, my thanks are due for
many interesting discussions on different aspects of the text and the application of
techniques in different fields.

I should also like to thank Ryan Keenan, Joel Barnes, and Joanne Gilman for their
assistance with many of the diagrams.

That said, all remaining errors in the book are mine.

JONATHAN ILIFFE




1
Introduction

1.1 Background

This book is designed as a practical guide for those working with spatially referenced
data to the problems that may be encountered with datums and map projections. It is
aimed at those working in surveying, remote sensing, geographic information systems,
and related areas, and therefore covers a wide range of scales and accuracy targets.
People encountering these topics may have very different starting points in terms of
their level of knowledge: those who are aware that they need to know something about
the subject, but are not yet sure what, would do well to commence by reading section
1.2 before proceeding further.

Until recently, an in-depth knowledge of datums was generally confined to a fairly
small group of scientists and to geodesists working in government survey depart-
ments. Most surveying was carried out on local scales using terrestrial equipment
(such as theodolites, levels and distance measurers) to establish positions with respect
to nearby control points: although the map projection was usually a consideration,
the question of the datum was of minimal importance. For the general user requiring
access to spatial data (on land use, for example), almost the only practical source was
a published map.

Two developments in recent years have been principally responsible for changing
this state of affairs. One has been the explosion in the use of spatial data that has
been brought about by the development of geographic information systems (GIS) for
handling and manipulating data in digital form. The other has been the development
of techniques such as the global positioning system (GPS) and satellite (or airborne)
remote sensing, which have made available entirely new methods of acquiring accu-
rate data. Moreover, these are techniques that, due to their global, space-based nature,
have broken free completely of the localised survey. In short, this is a classic case
of supply and demand: more and more data is available from a variety of different
sources, and more and more people have the means and the need to make use of it.

Supply, demand and — potentially — confusion. A situation now exists where it is
quite common for the means of acquiring data to be using a reference system that is
completely different from the one in which the data will ultimately be required. This
is a particular case of the problem of combining data sets, in which new data is to
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2 Datums and map projections

be put alongside archive material (which could have been referenced to one of many
scores of possible datums and an uncountable number of possible map projections),
but the problem is a more general one. A few examples will serve to illustrate this.

¢ Geo-referencing a satellite image with ground control points that have been
established using GPS, and with others that have been obtained from a published
map.

e Combining digital map data from two different survey organisations, for exam-
ple as part of a cross-border collaboration between neighbouring states.

e Carrying out a survey with high precision GPS, and bringing it into sympathy
with existing mapping in a local coordinate system.

o Navigating a ship or an aircraft using satellite systems, on charts that have been
prepared in a local datum. Even a leisure user of handheld GPS receivers will
need to make an appropriate correction when using them in conjunction with a
map.

These examples are significant, in that they can each be said to represent an in-
creasing trend. Indeed, it could be argued that the same forces that drive globalisation
in the political and economic spheres are having their effect on trends in the area of
spatial information. After all, a hydrographic surveyor in the English Channel and a
land surveyor in Ghana could both simultaneously be using the same positioning satel-
lite. They are probably not, at present, expressing the final result in the same datum,
but all major international organisations with an interest in spatial data are involved in
developing regional and global datums.

The examples given above focus on the problems of combining data from different
sources. Another reason for understanding the nature of a reference system is that it is
often necessary to carry out computations using the data: it must, after all, have been
acquired for some purpose. Computations that use geographic or geodetic coordinates
(latitude, longitude and height) require a particular branch of mathematics. Projections
introduce certain distortions of distance.

In some situations, this is hardly a problem. For example, if Ordnance Survey dig-
ital data is being used to determine the optimum route on the road network between
two points, the distortions of the projection are insignificant at the accuracy level
required. To take an example at the other extreme of accuracy requirements, how-
ever, the establishment of maritime boundaries between states involves determining
distances between median lines and coastal points. This computation can be done us-
ing geodetic coordinates, but not without difficulty. Using a projection is easier, but
the distances will be distorted and the computation will be inexact: although this may
be insignificant over small areas if an appropriate projection is used, it is not likely to
be sufficiently accurate for large areas such as the North Sea. Where the limit lies, and
what an appropriate projection is, are questions it is necessary to be able to answer
when tackling problems of this nature.

The first intention of this book is to clarify the definitions of geodetic datums and
map projections, and to explore some of their important characteristics. The proce-
dures for transforming between data sets under a variety of different circumstances
will then be discussed.
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This is information which, in theory at least, is available in most textbooks on
geodesy. In practice, however, there are two problems that can cause difficulties.
Firstly, datums and transformations usually form a limited part of the content of geode-
tic textbooks, and the relevant information can be difficult to extract and is rarely
aimed at the non-specialist who still has a real need to interpret geodetic data. Sec-
ondly, and more importantly, the treatment in most standard texts tends to assume
that all necessary information is available and stops short of explaining what to do
when it is not. Anyone with any practical experience of manipulating spatial data will
know that not infrequently some apparently essential information is missing: nothing
is known about the geoid, for example, or the exact datum and projection of a digitised
map are unknown.

The second principal aim of this book is therefore to act as a practical guide to
these problems and to show where particular procedures are necessary and where they
are not, or to show what can be done about situations in which not all the information
is available. This is reinforced by a series of case studies which examine particular
problems or combinations of problems, and by an appendix that groups together some
of the essential mathematical formulae and procedures for computations within a co-
ordinate system or for transforming between them. In general, however, the assump-
tion will be that most readers are well supplied with software packages to carry out
the computations: interpreting what they are doing is the key issue.

1.2 Coordinates and datums

Consider each of the following statements:
o The height of the point is 3.122 m.
o The height above mean sea level is 10.983 m.
o The latitude is 32° 10/ 12.23" .
o The northings of the point are 152 345.834.

All of these express coordinates with a great deal of precision: the other thing that
they have in common is that they are all — to a greater or lesser extent — ambiguous
statements, as they contain no information on the coordinate framework in which they
are measured. What would render them unambiguous would be a clear definition of
the datum that is associated with each one.

What is a datum? Many readers will have encountered the use of the expression
with reference to heights: for example, in the statement ‘this point is 3.2 m above the
datum’. This therefore seems a reasonable place to start.

If, for example, an engineer is interested only in the relative heights of points
within a construction project, and not in their relationship to the outside world, then
it will be acceptable to designate one point as having an arbitrary height — 100 m
for example — and finding the heights of all others with respect to this. Such an act
has effectively defined a datum, because it has established the position of the origin
of the coordinate system. It would also have been possible to define the datum by
designating the height of any other point, in which case all heights would be different
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(see Fig. 1.1). Thus, the definition of the datum is seen to be essential information
that accompanies the given coordinates.

A

om) —L

4 ¥ 0m@B)
Figure 1.1 A point with different heights in datum A and datum B.

This is also the situation with two- or three-dimensional coordinate systems such
as eastings and northings, or XYZ, or latitude and longitude. However, an additional
complication is the fact that — without changing the datum — it is possible to express
the coordinates in a different way. A useful example of this is the two-dimensional
coordinate system shown in Fig. 1.2. In this example, the coordinates of the point P
may be quoted in either the rectangular form (X,Y) or the polar form (7,8): the point
is that changing from one to the other is a relatively straightforward procedure that
does not involve changing the point of origin, and does not imply a change of datum.

A X p

—>

Figure 1.2  Rectangular and polar coordinates in one datum.

A similar situation exists in geodesy, but not all of the means of expressing position
(or of converting between different forms) are as simple as in the above example. With
this in mind, it is convenient to have a diagram of the different types of coordinate sys-
tems, with cross-references to where in this book fuller definitions or explanations of
formulae may be found. This diagram can then be used as a ‘route map’ in navigating
between different sets of coordinates.

In Fig. 1.3, each horizontal row represents a different datum — in this case labelled
datums A and B. In this book, datums are covered in Chapter 4: international and
satellite datums such as WGS-84 and ITRF are treated in section 4.1, and locally
defined datums that are used as the basis of coordinates in individual countries or
regions are discussed in section 4.2.
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Projection coordinates Geodetic coordinates Geodetic coordinates Cartesian coordinates
Orthometric height Orthometric height Spheroidal height

Figure 1.3 Complete procedure for transformations between different datums and projections.

Within each row, each vertically arranged box represents a different method of
expressing coordinates. Brief, and not necessarily rigorous, definitions of these are as
follows:

o Projection coordinates: An arrangement whereby the curved surface of the
Earth is represented as a plane, thereby introducing distortions. Within this
plane, a simple set of XY or east and north axes is defined. This topic is intro-
duced in Chapter 7, and individual types of projection are discussed in Chapters
8-11. An example of the issues raised by carrying out computations within a
projected coordinate system is given in section 13.3.

o Orthometric heights (or heights above the geoid): Heights defined above the
irregular surface, the geoid, that closely approximates mean sea level. The geoid
and its characteristics are explained in section 3.1, and the practicalities of estab-
lishing a vertical datum, and the consequences of the differences between the
geoid and mean sea level, are discussed in section 3.2.

e Geodetic coordinates: Latitude and longitude defined with respect to a spheroid.
The fundamental definitions of these are given in section 2.3.

e Spheroidal (or ellipsoidal) heights: Heights defined above a spheroid which has
been established as the datum for a particular country or region, or on a global
basis.

e Cartesian coordinates: Three-dimensional coordinates defined with respect to
a set of axes with their origin at the centre of the spheroid used in the datum.
These are discussed in section 2.4.

Any set of coordinates will be in one of the forms shown in Fig. 1.3. Most users
of spatial data will want to do one of two things with the data:

¢ Carry out computations within the coordinate system that the data are in — for
example to compute distances or angles between sets of points. In this case
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reference should be made to the sections of this book that describe the nature
and characteristics of the different types of coordinate systems.

e Convert the data to another coordinate form or another datum. This will in-
volve one or more steps in the transformation process, which are labelled on the
diagram and described below.

1. The vertical datums used for orthometric heights are not actually related
to the two-dimensional datums, and so H is on a separate datum to the
eastings and northings (E,N). Section 3.2 discusses vertical datums, and
points out that a change in the vertical datum changes the orthometric
height by at most 1 m: for many purposes it will not be necessary to in-
troduce a change, and so the orthometric height in the two systems will be
the same.

2. Direct conversion from one map to another is possible for low levels of
accuracy, provided that common points can be identified in both systems.
Chapter 12 explores the limitations of this approach, with examples being
given in the case studies in sections 13.4 and 13.5. The mathematical
basis for determining the parameters of the transformation is discussed in
the appendix.

3. The formulae for the conversion from projection coordinates to geodetic
coordinates (and vice versa) depends on the type of projection. Chapter 11
summarises the information that will be required; section 12.4 discusses
the options available if some of the parameters are not available, with the
case study in section 13.6 giving an example of this.

4. The conversion from geoidal or orthometric heights to spheroidal heights
(and vice versa) requires a knowledge of the separation between the geoid
and the spheroid, as discussed in section 3.1. The basic equations to be
used are (3.1) and (3.2), which are given in section 3.2. Sections 6.2 and
6.5 respectively discuss the approaches that may be adopted for low and
high accuracy applications if no information is available on the geoid-
spheroid separation. It should be remembered that the value of the separa-
tion between geoid and spheroid is dependent on the datum that is being
used.

5. The conversion from geodetic to cartesian coordinates is straightforward,
and requires only a knowledge of the parameters of the spheroid used in
the datum. The formulae are given in section 2.4.

6. Molodensky’s formulae (section 4.2) can convert directly from geodetic
coordinates on one datum to geodetic coordinates on another, given the
change in spheroidal parameters and the offset between the two datums.
This approach is easier for computations on a hand calculator, but other-
wise the intermediate conversion to cartesian coordinates is conceptually
easier (and is in any case a step that is simply hidden in the direct formu-
lae). This book will generally adopt this approach.

7. This step represents the actual datum transformation — a process that in-
volves at least a three-dimensional shift, and possibly rotations and a scale
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change. Section 4.2 introduces the topic; some of the problems that may
be encountered are covered in Chapter 6. A full treatment of the deter-
mination of transformation parameters by least squares is given in the ap-
pendix, and the case study in section 13.1 gives a numerical example of
the transformation of GPS data into a local datum.




2
Two- and three-dimensional
coordinate systems

2.1 Introduction

As explained in section 1.2, a datum is a reference system in which the coordinates of
spatial data may be expressed. It may be a three-dimensional system in cartesian or
curvilinear form; it may be two-dimensional in a map projection or a locally defined
system; or at its simplest it may be a one-dimensional system for expressing heights.

This chapter will consider the geometrical models that are used to define reference
systems for expressing two- and three-dimensional coordinates of points.

In order to follow the definitions of the systems used, it is first necessary to con-
sider the shape and size of the Earth.

2.2 Spherical coordinates

The first approximation that can be made to the shape and size of the Earth is that it
is a sphere of radius 6371 km. Three-dimensional spherical coordinates can then be
defined with respect to this shape (see Fig. 2.1):

o latitude: the angle north or south from the equatorial plane, ¢
e longitude: the angle east or west from the Greenwich meridian, A
e height: a distance in metres above (or below) the sphere, A.

The definition of latitude is a natural one, in that the poles are clearly defined
points on the surface of the Earth, and the equator is the circle that bisects the two.
On the other hand, the definition of longitude is to some extent arbitrary, as there are
no physical reasons for choosing a particular meridian as the reference value. Histor-
ically, different prime meridians were used by different states, but the convention of
using Greenwich is now universal.

The relationship between the definition of longitude in a particular datum and the
establishment of a time datum should be remarked upon. In effect, the determination
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Pole

Greenwich

Equator [0}

view in the
equatorial plane

Figure 2.1  Spherical coordinates. ¢, latitude; A, longitude; A, height.

of the longitude with respect to the Greenwich meridian could only be carried out with
a precision equivalent to the establishment of Greenwich Mean Time at the site of the
datum. A 1 s second error in the determination of time would translate to a 15 arc
second rotation of the datum with respect to the Greenwich meridian.

In conjunction with this coordinate system, it is useful to define the following
terms:

o parallels of latitude: lines of equal latitude on the surface of the sphere
e meridians: lines of equal longitude.

Figure 2.2 shows the pattern that results from parallels and meridians depicted at
intervals of 5°.

For many applications that do not require the highest accuracy, the sphere is an
adequate representation of the Earth. Appendix section A1 summarises some of the
formulae that can be used in conjunction with the spherical model, such as finding the
distance and azimuth between points of known coordinates.

2.3 Spheroidal coordinates

A better approximation to the shape of the Earth is that it is an ellipsoid of revolution,
often more conveniently called a spheroid. This surface is formed by an ellipse which
has been rotated about its shortest (minor) axis, or by ‘squashing’ a sphere at the poles.
The term ellipsoid can also be used for this shape and, although some would differen-
tiate between an ellipsoid and a spheroid, in this context the two can be regarded as
Synonymous.

A spheroid formed in this way is referred to as an oblate spheroid, as opposed to a
prolate spheroid which would be formed by extending the distance between the poles.
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Figure 2.2 Meridians and parallels at 5° intervals.

As all the spheroids referred to in this text are oblate, the term spheroid can be used

without ambiguity.
A spheroid is defined by the size of two parameters (see Fig. 2.3):

o the semi-major axis, a

o the semi-minor axis, b.

h 4

Figure 2.3 Defining parameters of a spheroid.

From these two parameters, it is possible to derive further definitions. Thus:

o flattening, f, is defined as
2.1

_a—b

f

a
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® eccentricity, e, is defined as

2_b2
J:“ﬁ 2.2)

Furthermore, e, f and b can be related to each other as follows:

e =2f—f* (2.3)

\h—ézu—nzg (2.4)

Thus, a spheroid can be completely defined using the two parameters a and b, or
aand f, or a and e, and the remaining parameters can be found as necessary.

A typical value for a would be 6 378 137 m and for f would be 1/298. A spheroid
with this degree of flattening would, to the eye, appear indistinguishable from a sphere,
and it must therefore be emphasised that most diagrams of the spheroid exaggerate the
flattening for purposes of clarity.

It is now possible to define a set of coordinates with respect to this spheroid. Once
again these are defined as latitude, longitude and height. These are shown in Fig. 2.4,
from which it is apparent that the latitude and longitude are defined with respect to the
direction of the spheroidal normal, a line from the point in question that is perpendic-
ular to the spheroid.

Greenwich

Equator ¢

View in the equatorial
plane

Figure 2.4 Geodetic coordinates. ¢, latitude; A, longitude; A, height.

Coordinates defined in this way are known as geodetic coordinates, and are the
basis for all mapping systems. The distinction between geographic coordinates im-
plying a spherical Earth model and geodetic coordinates implying a spheroidal one is
useful, but by no means universally adopted: many texts use geographic coordinates
as a generic term that also encompasses latitude and longitude defined with respect to
a spheroidal model.

It is possible to carry out computations in a spheroidal coordinate system, particu-
larly in the region close to its surface. In traditional land surveying, these would have
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been used when computing coordinates in large scale geodetic surveys, a process that
has largely been superseded by the use of cartesian coordinates (section 2.4) and the
GPS (Chapter 5). Over shorter distances it has usually been possible to use a projected
coordinate system. One of the few remaining areas where computations are needed
in geodetic coordinates is in the definition of boundaries between states, or between
mineral concessions. For this reason, a summary of some of the most useful formulae
and procedures is given in Appendix section A2. Otherwise, any textbook on geodesy,
such as Bomford (1980) or Torge (1991), gives further and more detailed information
on spheroidal geometry.

2.4 Cartesian coordinates

The formulae involved in computations based on geodetic coordinates are compli-
cated, and entirely inappropriate when considering observations made to satellites.
More appropriately, a set of cartesian coordinates (X, Y, Z) is defined with its
origin at the centre of the spheroid. The Z axis is aligned with the minor axis of the
spheroid (the ‘polar’ axis); the X axis is in the equatorial plane and aligned with the
Greenwich meridian; the ¥ axis forms a right-handed system (see Fig. 2.5).

Zz

e

Figure 2.5 Cartesian coordinates.

Geodetic coordinates may be transformed to cartesian coordinates by a set of for-
mulae which require a knowledge of the parameters of the spheroid:

X =(v+h)cosdcosA (2.5)
Y = (v+h)cosdsink
Z={(1-€*)v+h}sing

where

a
V= e (2.6)

0 is the latitude, positive north; A is the longitude, positive east; and £ is the spheroidal
height (the height above the spheroid). The reverse computation, in which geodetic
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coordinates are found from cartesian ones, is also possible:

Y
tanA = —
an X

Z+ebsindu

tan) = —————
¢ p—elacosiu

h=(X2+Y)"2seco—v
where

p= (X2+Y2)1/2

£ = ——
1—e2

and all other térms are as defined above.

2.7

2.8)

2.9)

(2.10)

2.11)

(2.12)



3
Height and the geoid

3.1 The geoid

The spheroid is a good approximation to the shape of the Earth, but not an exact
representation of it. The shape of the Earth is given by the form of a surface which
is everywhere perpendicular to the direction of gravity (such a figure is termed an
equipotential surface). The force and direction of gravity are affected by irregularities
in the density of the Earth’s crust and mantle. It therefore follows that the form of an
equipotential surface is somewhat irregular.

Of course, the fact that the spheroid is only an approximation of the shape of the
Earth does not invalidate it as a model to be adopted in expressing coordinates. It is
important to note that using geodetic coordinates based on a spheroid does not lead
to errors when expressing the position of a point: it is simply a question of using a
surface with a convenient mathematical expression onto which positions are projected.

To a very good approximation, the form of the mean sea level surface is equipo-
tential, since the sea would be expected to be perpendicular to gravity. (In fact the seas
and oceans contain permanent currents which cause a permanent slope with respect
to the direction of gravity.) The true shape of the Earth is known as the geoid, and
this can now be defined as that equipotential surface that most closely corresponds to
mean sea level.

Worldwide, the difference between the geoid and mean sea level is at the most
around 1 m (and changes slowly over wavelengths of tens of kilometres), and so for
many purposes these two can be considered synonymous. Sometimes, however, it is
important to note the difference.

The spheroid is a very good approximation to the geoid, but there are significant
differences. If a spheroid is formed which best fits the geoid, the differences between
the two amount to 100 m, with a global root mean square of around 30 m. Figure 3.1
shows the form of the geoid worldwide. The height of the geoid above the spheroid is
known as the geoid—spheroid separation, or often just the separation, and is usually
given the symbol N. This may be a positive or a negative quantity, as shown in Fig. 3.2.
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Figure 3.1 The geoid with respect to a best-fitting global datum. The values used are from the EGM96 model (NASA, 1996).
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Separation, N

Spheroid

Geoid

Figure 3.2  Sectional view of a spheroid and the geoid.

Some texts refer not to the height of the geoid above the spheroid, but to the
undulation of the geoid. This is a rather unsatisfactory term, as the derivation of the
word implies that the phenomenon under consideration is a wave, rather than a height.
In this book N is called the separation, and the expression undulations of the geoid is
reserved to refer to the presence of ‘waves’ in the part of the geoid in question. (A
geoid without undulations, for example, would imply that at the accuracy required it
appears to be at a constant height above the spheroid, or can be modelled simply as an
inclined plane.)

Note also in Fig. 3.2 that the direction of the vertical (perpendicular to the geoid) is
not usually coincident with a spheroidal normal. The angle between the two is termed
the deviation of the vertical, and is usually resolved into a north—south component,
E, and an east-west component, 1. These angles typically amount to a few seconds
of arc. ,

Astronomical coordinates may be defined with respect to the direction of the verti-
cal in the same way that geodetic coordinates are defined with respect to the direction
of the normal. These coordinates would be used in situations where a knowledge of
the direction of the vertical is required (for example in determining the slope of the
geoid), but they are somewhat irregular, and the geodetic coordinates remain the basis
of the mapping system.

It must be emphasised that any diagram of the geoid will have to greatly exaggerate
its deviation from the spheroid in order to be comprehensible. If it is recalled that the
deviation between the two is less than 100 m over a body with dimensions of around
6400 km, then it will be appreciated that on a correct diagram the two surfaces would
be indistinguishable. In fact, the geoid never actually ‘doubles back on itself’ — it
is always convex — and therefore astronomical coordinates are always unique (it is
impossible for two points to have the same latitude, a point not apparent from Fig. 3.2).

In many situations it is necessary to have a knowledge of the form of the geoid,
either globally or for a specific region. This can be derived (with a great deal of effort)
from gravity observations, observations of satellite orbits, satellite altimetry over the
oceans, and other data sources. In developed countries with dense gravity observations
the separation may be known to an accuracy of 5—10 cm. In other parts of the world it
may be much worse than this. The point of reference would be the national mapping
organisation for the country concerned or a university research department.

Globally, the geoid may be found from a set of coefficients of a spherical harmonic
expansion, often referred to as a global Earth model. This expresses the geoid in terms
of a series of functions over the sphere that are of increasingly small wavelength. The
smallest wavelength that the model can express is a function of its highest degree: a
model that is described as being complete to degree Nyax can model wavelengths
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down to 180°/Nyax. A global Earth model used to compute satellite orbits, for ex-
ample, might be complete to degree 36, which would be sufficient to describe the long
wavelength part of the geoid, but could not express any effects with a wavelength of
less than 5°, or around 500 km.

Until recently, some of the most finely detailed Earth models were produced by
the Ohio State University, and the model referred to as OSU91 (Rapp and Pavlis,
1990) was widely circulated and is still very much used. Being complete to degree
360, this models the form of the geoid down to wavelengths of around 0.5°, or 50 km,
and is accurate to about 1-2 m. In some parts of the world the accuracy is rather
worse than this, however, particularly in those areas where a dense network of gravity
observations is not available.

OSU91 has now been superseded by a model that has been jointly determined by
the National Imaging and Mapping Authority (NIMA) and the National Aeronautics
and Space Administration (NASA), and is referred to as the Earth Geopotential Model
1996, or EGM96 (Rapp and Nerem, 1994) (see Fig. 3.2). This too is complete to
degree 360, but gains an increased accuracy through the use of additional data, in
particular gravity observations that were previously unavailable and new data from
satellite missions.

The coefficients of the spherical harmonic expansion of EGM96, together with
a computer program for determining the geoid from them, are freely available on
the World Wide Web (NASA, 1996). Also available is a file of geoid point values
determined on a 0.25° grid: a considerable amount of processing is saved if the geoid
is interpolated from these values.

Clearly, then, a model such as EGM96 will solve the geoid problem in most parts
of the world for users who require an accuracy of no better than 1 m. For accuracies
greater than this, it is instructive to consider the size and characteristics of the part of
the geoid that is not modeiled by EGM96.

As stated at the start of this section, the irregular nature of the geoid is caused
by the underlying irregularities in the Earth’s gravity field. For longer wavelengths
(which are usually of greater amplitude) this is usually due to deep-seated effects such
as the interaction between the Earth’s crust and mantle at the boundaries of tectonic
plates (Lambeck, 1988). These features are usually adequately described by the global
models. The shortest wavelength effects are mostly due to the irregularities of the
terrain (Forsberg and Tscherning, 1981). Importantly, then, the size of the undulations
of the geoid that exist over and above those effects modelled by EGM96 or OSU91
are very much correlated with the roughness of the terrain.

To get a feel for the characteristics of the geoid, examples will be shown of a recent
project to determine the geoid in Zimbabwe, with data drawn from Nyamangunda
(1997). Figure 3.3 shows a sample cross-section of the geoid at latitude 16° S, with
the longitude ranging from 29° to 31° E: this is a distance of around 200 km. The
smoother of the two lines in Fig. 3.3 is the underlying trend of the geoid that has been
derived from the global model. The more complex line is a better approximation of
the geoid, as this has been derived by using additional terrain and gravity data, and is
therefore capable of picking up shorter wavelength effects.

On looking at a 2° cross-section of the geoid, the smoothing effect of the global
model becomes apparent. It is clear, nevertheless, that the very large changes in the
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Figure 3.3  Cross-section of the geoid at latitude 16° S.

separation are generally quite well modelled by the global expansion. Taking the less
smooth line to represent the actual geoid (although in fact the scarcity of data in this
part of the world means that it does still have errors of a decimetre or so0) some quite
substantial undulations are still seén over distances of a few kilometres.

With the aid of Fig. 3.3, and referring also to the global picture of the geoid seen
in Fig. 3.2, we now consider two practical questions about the geoid.

3.1.1 To what extent can the geoid—spheroid separation be consid-
ered a constant value?

Only to a very limited extent. If a project requires centimetric accuracy, it would not
be safe to assume a constant value for the separation over distances of more than about
200 m.

For less precise applications, requiring an accuracy of, say, 2 m, Fig. 3.3 sug-
gests that the separation might be considered constant over distances up to around
30-50 km. Referring to Fig. 3.1, however, it is notable that in some parts of the world
the separation may change by 10 m over distances as short as 50 km.

To a certain extent, the situation is eased when using a local reference system,
as described in section 4.2, as opposed to a global datum such as WGS84. A local
reference system will usually have been optimised to fit the shape of the geoid in a
particular region, and the slope of the geoid is usually less severe. In the UK, for
example, the total range of the geoid separation is 0-5 m. But note that this is true
only when expressing the geoid height with respect to the British datum: it is not true
when expressing it with respect to WGS84. It should also be pointed out that this
applies principally to slopes over longer distances: short-wavelength undulations are
present whatever reference surface is used.
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3.1.2 To what extent can the geoid be modelled as a uniform slope?

This question is of particular importance in precise GPS applications, as section 6.5
shows that a section of the geoid that approximates a sloping plane can effectively be
ignored when using similarity transformations to tie into local control points.

~ 50 km >

Separation N (metres)

6.5

Figure 3.4 50 km cross-section of the geoid at latitude 16° S.

To answer the question, let us look a little closer at a smaller part of the geoidal
cross-section shown in Fig. 3.3. This time, Fig. 3.4 shows a section around 50 km long.
Looking at section AA in this example it seems that the geoid could be modelled by
a uniform slope with a precision of around 50 cm for a distance of 50 km. For the
shorter section BB, which is around 20 km, the precision is around 10-15 cm. We
could tentatively infer that these results are typical, although it should be noted that
the terrain in this test area is fairly rugged (with heights up to 1000 m), and a better
result might be expected in less hilly terrain.

3.2 Reference surfaces for height

An important consequence of the irregularity of the geoid is that it leads to an alter-
native definition of height to the spheroidal height defined in section 2.3. This is the
height of a point above the geoid or the orthometric height, usually given the sym-
bol H.

As the height above the geoid is approximately the same as the height above mean
sea level, this is the value that is usually used in surveying and mapping, and which
is displayed on almost all maps and charts. It is, in fact, the height which can be
obtained by levelling, provided that for very precise applications suitable corrections
are made to counter the effect of convergence of the Earth’s equipotential surfaces —
these corrections are measured in centimetres over many tens of kilometres.
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The reference point for mean sea level in a national mapping system is usually
a tide gauge. Since there is a difference between the geoid and mean sea level, as
mentioned in section 3.1, the datum for height is slightly different in each country. The
significance of this pointis illustrated by considering a project such as the construction
of the Channel Tunnel. If the tunnellers from each end were due to meet at a midpoint
defined as a certain height above (or in this case below) the geoid, then in principal
there would not be a problem since the geoid is a unique surface. In practice, however,
the vertical reference surface in each country would be defined with respect to different
tide gauges. To complicate matters further, these tide gauges are not placed on either
side of the Channel (in which case a fairly small slope of the sea surface might be
expected over this short distance) but in Newlyn (in Cornwall) and Marseilles (on the
Mediterranean coast). The difference in the vertical datums between Great Britain
and France is therefore a function of the slope of the sea surface over the rather longer
(sea) distance between these two ports, and in fact amounts to some 30 8 cm (Willis
et al., 1989).

To emphasise what is happening in this situation, let us restate the definition of the
geoid given in the previous section: it is that equipotential surface that most closely
corresponds to mean sea level. In effect, we can now see that this is an ideal, and the
practical realisation of the sitnation is in fact that each country has selected a slightly
different equipotential surface. Rapp (1994) quantified these differences by comparing
determinations of the geoid separation that were found from the differences between
orthometric and ellipsoidal heights on the one hand, and from global geopotential
models on the other. Although the precision of these determinations is not sufficient
for high accuracy engineering work, they are illustrative of the general problem, and

are summarised in Fig. 3.5.
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Figure 3.5 Reference surfaces with respect to the ideal geoid (after Rapp, 1994). All units are
centimetres.

In some countries, the situation depicted above is itself an oversimplification. One
example is Australia, where the vertical datum AHD71 (Australian Height Datum
1971) was established by adjusting a network of levelling observations across the
country while holding the values fixed at 30 tide gauges spread around the coast (Hig-
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gins et al., 1998). Since each of these tide gauges is establishing the datum at a dif-
ferent equipotential surface, what is effectively happening is that the reference surface
is no longer a single equipotential surface, but changes gradually from place to place.
This is illustrated symbolically in Fig. 3.6. Over the kind of distances involved, this
has not previously been a problem, as the differences were exceeded by the accuracy
that could be achieved from levelling. It does present a problem, however, in quoting
a value for the geoid—spheroid separation that should be used to correct heights de-
termined from GPS. This is another example of the way in which datums are having
to be redefined in the light of the increased accuracies that are possible with satellite
systems.

Tide gauge

Height datu

Ellipsoid

Figure 3.6  Vertical datum tied to several tide gauges.

Spheroid

Figure 3.7  Orthometric height and spheroidal height.

The relationship between the orthometric height, H, and the spheroidal height, 4,
is as shown in Fig. 3.7. Since the angle between the vertical and the normal is so
small, it can be said without any significant loss of accuracy that:

h=H+N 3.1)

It is emphasised that the height 4 is the value that normally results from satellite ob-
servations; the significance of this equation is therefore that in order to obtain a height
above the geoid, H, it is necessary to know the separation, N.

Alternatively, since most precise satellite positioning is done by relative techniques
(as described in Chapter 5), (3.1) can be recast in the fo.m:

Ah=AH+ AN (3.2)

This means that a satellite system such as GPS can be used to find the change in
spheroidal height (Ah) between, say, a bench mark and a new point. In order to find
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the orthometric height of the new point above the bench mark (AH) it is necessary to
know only the change in the geoid separation (AN). Within the accuracy limitations
discussed in section 3.1, this can sometimes be ignored.

As a final comment here on reference surfaces for height, it is worth pointing out
that the advantages of using ellipsoidal heights should not be overlooked. Although
these are not always appropriate, there are many situations in which the physical link
with the direction of gravity, and with a surface perpendicular to this, is unnecessary.
An example of this might be the monitoring of the movement of a point over time,
perhaps one near the summit of a volcano to give an indication of future eruption.
In this situation, a change in the height is all that is required, and a change in an
ellipsoidal height is the same as the change in the orthometric height to any accuracy
that could conceivably be required. The need for a determination of the separation is
thus avoided, as is the danger of an apparent change being recorded as a result of an
improved determination of the separation at a later date.

To take another example, an aircraft landing at an airfield and using a satellite posi-
tioning system (giving ellipsoidal height) can determine its height above obstructions
that have themselves been surveyed using satellite techniques and have their heights
expressed in ellipsoidal terms. In this context, the position of the mean sea level sur-
face becomes an abstract and irrelevant concept.

What might be thought of as a halfway position between using orthometric heights
and ellipsoidal heights is to adopt a standard model of the geoid to correct satellite ob-
servations: if the model is ot perfect, true orthometric heights will not be obtained.
On the other hand, if the use of the model is universal only the most precise engi-
neering applications will need to use any other form of height coordinate, and the
advantage will be that a consistent system will be adopted.



4
Global, regional, and local
datums

4.1 Global datums

4,1.1 Satellite datums

On a global basis, the most appropriate version of a spheroid is one that has its origin
at the centre of mass of the Earth and is of such a shape and size that it is the best
possible approximation to the form of the geoid. Such a spheroid is necessary for
any worldwide application, and is therefore the basis of a satellite reference system
or datum. A datum with its origin at the centre of the Earth is said to be geocentric.
This is a necessary condition for computations of satellite orbits. Since the advent
of satellite geodesy in the early 1960s, there have been several attempts to define a
global geocentric datum. The most recent of these is the World Geodetic System 1984
(WGS84).
The parameters of WGS84 are defined (Seeber, 1993) as :

a=6378137 f=1/298257223563

as well as further parameters relating to the gravitational field and the rate of rotation.
Note that the shape and size of the spheroid thus defined are almost consistent with
another commonly used global datum, the Geodetic Reference System 1980 (GRS80),
which is mainly used in gravitational applications. In fact, due to a slight difference
in the original terms used for the definition of these two datums, there is a difference
in their flattening (Hofmann-Wellenhof et al., 1997) that amounts to :

Af = fors — fwossa = 16 x 10712 4.1

For most practical purposes, this difference can be ignored and the spheroids consid-
ered equivalent.

The concept of realising a reference system, as opposed to defining it, is one that
has already been touched on with respect to the vertical height datums of the last sec-
tion, and will be explored more fully in the section on local and regional datums that
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follows. It is also something that should be considered when dealing with a satellite :
datum. In effect, this means that, although WGS84 can be defined as a geocentric ;
datum and related to a certain spheroid, most users will encounter this reference sys- :
tem through the use of the GPS (Chapter 5). The starting point for their positioning :
is the satellite ephemerides (or orbital positions) that are broadcast by the system, .
which in turn have been determined from a set of monitoring stations. It is these mon- °
itoring stations that effectively realise the coordinate system. Using a different set of ;
monitoring stations to determine the ephemerides (as, for example, the far more exten-
sive network of the International GPS for Geodynamics Service) would then lead to ;
a separation of the datum into two separate ones. This problem has now been largely
overcome by linking all important global networks into the International Terrestrial
Reference Framework discussed in the next section. :

An earlier attempt to define a geocentric reference system was WGS72. The pa-
rameters of this are:

a=6378135 f=1/298.26

WGS72 was a less accurate system than WGS84, and its origin has now been shown
to miss the centre of the Earth by almost 5 m. Figure 4.1 shows the main differences
between the two systems.

A Z (WGS84)

Origin of WGS72 \

45m
0.554"

X (WGS84) ) Y (WGss4)

X (WGST72 projected onto WGS84 equator)

Figure 4.1 Principal differences between WGS84 and WGS72.

WGS72 is no longer used for the acquisition of new data, so its interest is really
only in the interpretation of archive material. Again, it should be noted that there
were several different realisations of WGS72 resulting from the use of broadcast and
precise ephemerides.

Another group of satellite datums are those associated with GLONASS (Global
Navigation Satellite System), the Russian equivalent of GPS. The datums used for this
are the Soviet Geodetic System 1985 (S§GS85) and its successor SGS90 (introduced
in 1995, and alternatively referred to as PZ90). The defining geometrical parameters
of both SGS85 and SGS90 (Hooijberg, 1997) are:

a=6378136.0 f=1/298.257
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The shape and size of SGS90 are therefore very similar to those of WGS84, Several
attempts have been made to determine the transformation parameters between the two,
such as those by Misra and Abbot (1994) and Rossbach er al. (1996). These have
generally given similar results within the accuracy limitations that have been imposed
by the use of relatively small networks of points used.

The best current indications are that PZ90 has a zero meridian that is rotated 0.6”
to the east with respect to that of WGS84, and an equatorial plane that lies around
4 m to the north of WGS84’s. These discrepancies would show up directly between
absolute determinations of position by the two systems. In terms of relative position-
ing between two receivers, the rotation of 0.6" is the only relevant parameter, and is
equivalent to 1 cm over a distance of about 3.5 km. If a receiver makes use of satellites
from both systems, the differences in the datums is not a problem for short distance
or low accuracy applications; for high-precision baselines over long distances, better
transformations will have to be developed (Walsh and Daly, 1998).

4.1.2 International reference frames

An international terrestrial reference system (ITRS) is one that i3 made use of through-
out the world: WGS84 and PZ90 are examples of these. The most fundamental coordi-
nate datum in existence is the International Terrestrial Reference Framework (ITRF).
It is a highly accurate geocentric reference framework, with the coordinates of refer-
ence stations defined at the millimetre level.

The preparation and evaluation of the ITRF is the responsibility of the Interna-
tional Earth Rotation Service (IERS), which was established in 1998 to replace the
International Polar Motion Service and the Earth rotation functions of the Bureau In-
ternational de I’Heure. The wider remit of the IERS is to establish both the terrestrial
reference frame and the international celestial reference system (a coordinate system
that does not rotate with the Earth), and to determine the connections between the two
systems. This process involves monitoring and predicting the rotation of the Earth and
the movement of its poles, and is essential information if, for example, a determination
of a satellite’s position is to be given in a terrestrial system such as WGS84.

For the level of accuracy involved, it is no longer possible to have a reference
system that is independent of time, since the deformations of the Earth’s crust mean
that the coordinates of points within the system are continually moving, typically by
several centimetres per year. In some respects, extremely high precision positioning
is similar to very slow moving navigation.

The ITRF includes the velocities of its stations in the definition of the datum,
but applications making use of its coordinates will usually do so by reference to a
particular epoch, such as ITRF92, ITRF93, and ITRF94. The latest solution, ITRF96,
has determined the positions at 290 stations worldwide, of which 40% have position
uncertainties below 1 cm (IERS, 1998).

WGS84 was previously only defined at an accuracy level of around 50 cm. It
was redefined in 1994, however, in a form that was compatible with ITRF92, and
strictly speaking was then referred to as WGS84 (G730), with 730 being the GPS week
number in which the change was effected (the first full week of January 1994). Hence
WGS84 in this form is compatible with ITRF92 at the level of 10 cm (Hooijberg,
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1997). There have been other redefinitions since then, such as WGS84 (G873), and
although these are all slightly different datums this is noticeable only for applications
of the very highest accuracy.

The 290 stations of the ITRF are rather thinly spread around the world, and for
practical purposes it is necessary to densify this network: it can also be inconvenient in
some situations to have a coordinate set that is continuously changing. The European
Terrestrial Reference Framework 1989 (ETRF89) is a subset of ITRF defined in the
European region, and was equivalent to the ITRF at the time of its implementation.
There is in consequence a mismatch between ETRF89 and the current epoch of the
ITRF. This becomes apparent, for example, if points are being fixed with respect to
permanent GPS positions whose coordinates are published in ITRF, but where the final
object is to position points in the ETRF system. The discrepancy amounts to several
centimetres per year since ETRF was established, and a transformation is required for
high precision applications. The transformation parameters can be obtained from, for
example, Boucher and Altamimi (1998). Comments on the link between this system
and the British one are given in section 4.2.2.

4.2 Local and regional datums
4.2.1 Definition

A datum is defined by selecting an origin for a national or regional survey. At this point
the geoid—spheroid separation, N, and the deviation of the vertical are chosen, usually
as zero. This has the effect of fixing the chosen spheroid to the geoid (coincident and
parallel) at the point of origin. The orientation of the minor axis of the spheroid is
made parallel to the spin axis of the Earth by making Laplace azimuth observations:
observations of astronomical azimuth (with respect to the stars and the pole of the
Earth’s rotation) are converted to geodetic azimuth (defined on the ellipsoid) by a
formula that forces the poles of the two systems to be the same. This combination
of shape and size as given by the spheroid, and position as given by the fixing at the
origin, is essentially what defines a datum.

A spheroid is not a datum. Many countries may use the same spheroid, but they
are on different datums as they have different points of origin. Before the advent of
satellite geodesy, all national datums were of necessity defined independently of each
other.

The effect of defining the datum in this way is that the spheroid is not geocentric.
Figure 4.2 shows the relationship between a local datum and WGS84. It can be seen
that in general a point has different coordinates in the two reference systems, whether
these are expressed in geodetic or cartesian form.

Almost by definition, a local datum approximates the geoid in the region much
more closely than does the global datum, or a datum optimised for a wider region.
This point is illustrated by Figs 4.3 and 4.4, which show the geoid with respect to the
British and European datums respectively. Note that in these two diagrams the geoid
is the same; it is the reference system which has changed. Each local or regional
datum therefore has a point of origin which is offset from the centre of the Earth. The
size of this offset may be as much as 1 km. It is usually expressed in components
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Figure4.2 A local datum and WGS&4.

(AX,AY,AZ), where these values are effectively the coordinates of the origin of the
local datum in WGS84. Hence a simple transformation of coordinates from a local
system to WGS84 is given by:

X AX X
Y =|lar |+ [y 4.2)
z WGS84 AZ Z local

The transformation from geodetic coordinates on one datum to geodetic coordi-
nates on another can thus be achieved by the intermediate step of first converting to
cartesian coordinates via equations (2.5) , applying equation (4.2), and then converting
back to geodetic coordinates via equations (2.7)—(2.12).

Alternatively, it is possible to combine all these steps in one set of equations, such
as the Molodensky formulae (Stansell, 1978). These give the changes in geodetic
coordinates directly as:

{ — AX sing cosA — AY sind sin A+ AZ cos¢

3 + Aa[(ve?sing cos ) /a] + Aflp(a/b) + v(b/a)]sing cosd

Ab= (p+h)sink 43)
—AX sinA+ AY cosA

Ak = (v+h)cosd sinh @4)

b
Ah = AX cos® cosA+ AY cos0 sinA + AZ sin¢ — Aag + Afav sin2¢ 4.5)

where all terms have previously been defined except
a(l —é?)

(1 — e2sin® §)3/2 (4.6)

p:
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Figure 4.3 The geoid with respect to the British datum, OSGB36. (Courtesy of J. Olliver,
Oxford University.)
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Figure 4.4 The geoid with respect to the European datum, ED50. (Courtesy of J. Olliver,
Oxford University.)
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4.2.2 Realisation of a datum

The previous section provided a definition of a reference system. In fact, before it can
be used it is necessary to realise the datum; that is, to provide physical monuments
of known coordinates. Any mapping or surveying which is carried out is then related
to the coordinates of those control points that are available locally, rather than to the
rather abstract concept of a datum defined at an origin point.

This then presents the problem that the datum as realised includes all the measure-
ment errors and computational approximations of the original survey, which would
usually have been carried out by a process of triangulation using ground survey tech-
niques. Another significant effect is that the minor axis of the spheroid would have
been made parallel to the spin axis of the Earth as it existed at the time of the original
survey; in fact, the ‘wander’ of the pole means that modern datums use a conven-
tionally agreed point, rather than the pole’s instantaneous position at any one epoch.
It may also be the case that the transformation is between two datums that are both
distorted in this way: Appendix section A3 covers the mathematical treatment of this.

It is therefore necessary to modify the rather simple transformation procedure out-
lined in section 4.2.1 in two ways. Firstly, to accept that in addition to the simple
translation between two datums there may also exist rotations and scale changes. This
leads to a modified set of transformation equations:

X AX X
Y =[AY | +uR|Y 4.7
z WGS84 AZ Z. local

where y is the scale factor between the two systems and R is a rotation matrix, which
for small angles o, oy, &3 about the X, Y, Z axes (as shown in Fig. 4.5) can be
expressed as:

1 O3 —0
R=|-o3 1 oy (4.8)
oy —0y 1

The transformation described by equation (4.7) is not the only way of carrying out
a three-dimensional transformation, and in many ways it is not the best. An alternative
is given in section 6.5, and a more comprehensive mathematical treatment is given in
Appendix section A3.

The second modification relates to the distortions in the local datum. The amount
of distortion involved will be dependent on the size of the country (larger surveys
accumulate more errors away from the origin) and the way in which the original survey
and computations were carried out. A typical figure for the distortion of a country
such as Great Britain would be around 20 m (that is, the difference between the actual
distance between two points at either end of the country and the distance implied by
their coordinates). .

It is possible to regard the resulting situation in two different ways. Firstly, the
transformation given by equation (4.7) will convert coordinates into the datum, but
these will then be different from the ones that are actually used, owing to the ‘errors’
in the local survey. It is important, however, to then add these errors to the converted
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Figure 4.5 Rotation convention.

coordinates to bring them into line as the errors are part of the datum. That is, once the
error has been made it is important for consistency that all users adopt it. This is not
quite the chaotic situation it implies, because in general the errors at points in any one
region of the survey will be very similar to each other (although in Great Britain some
quite sharp discontinuities do exist because of the way in which the original survey
was computed). This is effectively the approach used by the Ordnance Survey, which
has published a method for determining the additional distortions to an accuracy of
around 2 m (Ordnance Survey, 1995a). The Ordnance Survey also provides a service
that will determine the distortions to an accuracy of 20 cm. This is discussed further
in section 6.5.

An alternative way of looking at the problem, and one that is generally of more use
to those determining their own transformation parameters, is to regard a small region
of the local system as largely undistorted (since the errors in that region are highly
correlated with each other), and then to derive a set of transformation parameters as
in the model given in equation (4.7). These will be applicable only to the region for
which they were derived, and will not in general be applicable to other areas. Thus,
conceptually, a situation arises where the transformation parameters can be thought
of as variables that change across the country. It is even possible to produce a set of
maps that show, for example, how the AX parameter varies, although this is liable to
lull the user into a false sense of the exactitude of such a procedure.

Whichever of these methods is used to conceptualise or to solve the problem, it
must be emphasised that no one set of transformation parameters on its own is likely
to be sufficient except at accuracies of a few tens of metres. Figures quoted for the
datum of any particular country will be average values and not applicable throughout
the country without some loss of accuracy.

Some examples of transformation parameters for various datums are given in Table
4.1; the values given here are averages, and should be used with caution. Notes on
sourcing this information are given in section 6.4.1.

The datum transformation parameters for adjacent countries are correlated only if
there was a political link at the time of the establishment of the original survey, as
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Table 4.1 Examples of transformation parameters from local datums to WGS84

Datum name Spheroid AX (m) AY (m) AZ (m)
OSGB 36 Airy —375 111 —431
Ireland 1965 Airy 1830 Mod -506 122 —611
French Clarke 1880 (IGN) —168 -72 314
German (West) Bessel 1841 583 68 395
Netherlands Bessel 1841 593 19 468
Swiss Bessel 1841 679 0 406
European 1950 International 1924 87 98 121
Cape (South Africa) Clarke 1880 Mod 136 108 292
Arc 1950 (Zimbabwe) Clarke 1880 Mod 142 96 293
Namibian Bessel 1841 Nam —616 -97 251
North American 1927 Clarke 1866 8 -160 —176
(Conterminous USA)

North American 1927 Clarke 1866 10 —158 —187
(Canada)

Indian Everest 1830C —289 —734 —257
(India, Bangladesh,

Nepal)

Timbalai 1968 (Sabah)  Everest 1830B 689 —691 46
Tokyo (Japan) Bessel 1841 123 —483 —662

Table 4.1 shows. Thus, the parameters for South Africa and Zimbabwe are similar,
whereas those for Namibia (formerly German South West Africa) are very different.

There is a trend in some countries (for example the USA and Australia) for the
ITRF to be adopted as the basis for the national mapping system. The advantages
ensuing from such a situation must be balanced against the costs of converting all
existing data to the new datum.

In Great Britain (but not in Northern Ireland) the official datum is OSGB36; the
coordinates of all triangulation points and all maps are based on this system. Along-
side this there is a datum known as OS(GPS)93, which is specifically for use with
GPS (Chapter 5). This datum is entirely compatible with ETRF89, and there is hence
a rather complex transformation between this and OSGB36. The possibility of adopt-
ing ETRF89 as the basis for mapping in Great Britain at some future date is being kept
under review (Calvert, 1994), but at present the emphasis is on promoting the accep-
tance of a consistent set of conversion algorithms (Ordnance Survey, 1997, 1998).
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The global positioning system

5.1 Introduction

For many users of spatial data, the idea that maps can be on different datums, and
indeed on a different one from the method of data acquisition, will first have been en-
countered when using the global positioning system (GPS). For this reason, although
it would be possible (and quite reasonable) to write an entire book devoted to this
system, it is appropriate to summarise its most important features here, and to explore
some of the datum aspects in more detail.

A more extensive treatment can be found in standard texts such as Hofmann-
Wellenhof et al. (1997) or Leick (1990).

5.2 System overview

The GPS was originally conceived as a navigation system — that is, one capable of
instantaneous determinations of position and velocity. As will be seen, the minimum
requirement for its operation is the ability of a user to receive signals from at least
four satellites simultaneously: for locations that are uncluttered by obstructions in the
form of buildings or dense foliage this requirement is assured by the constellation of
21 satellites at a mean height of 20 200 km above the surface of the earth, as shown in
Fig. 5.1

The basic premise of GPS is the same as that of any surveying system: the coordi-
nates of new points are found by making observations with respect to points of known
coordinates. The only differences here are that the known points are in orbit, and are
not stationary. The determination of the coordinates of these satellites is therefore a
continuous process, and is achieved by the control segment of GPS, which consists of
a worldwide network of monitoring and control stations dedicated to the task of deter-
mining the orbital paths of the satellites and monitoring the health of their signals. Itis
then possible to predict the orbit of a satellite a short way into the future, and to upload
this information to the satellite itself. In this way, the satellite is able to broadcast its
position (referred to as the ephemeris) for the users to determine their own position in
real time.

33
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Figure 5.1 The GPS constellation.

The information transmitted by the GPS satellites is modulated onto two un-
derlying carrier waves, referred to as L1 and L2. The former has a frequency of
1575.42 MHz (equivalent to a wavelength of 19.05 cm) and the latter has a frequency
of 1227.60 MHz (equivalent to 24.45 cm).

In addition to the ephemeris and other general information about the system, two
binary codes are also modulated onto the carrier waves. These can be thought of as
being the equivalent of the step function shown in Fig. 5.2, with each change in sign
being represented by a change in phase of the carrier wave. The two codes are referred
to as the coarse acquisition (C/A) code and the precise (P) code, and their effective
wavelengths are 300 m and 30 m respectively. Although the P code is publicly avail-
able, a further encryption (the W code) is added which makes it inaccessible to most
users. The resulting combination is referred to as the Y code, and the procedure of
implementing this encryption is known as anti-spoofing. In fact, the C/A code is mod-
ulated onto the L1 carrier only, whereas the P code is modulated onto both frequencies,
a configuration that deliberately denies the non-military user the advantages of a dual
frequency system (although this is overcome for some applications).

Figure 5.2 Binary code carried on the GPS signal.

The main point to note about the codes at this stage is that they are transmitted in
a predetermined sequence at precise times for each satellite. Thus, if the codes can be
read, they can simply be thought of as time information.
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5.3 Positioning with codes

The basic method for positioning with GPS is through the use of the codes, usually
only the C/A code on the L1 carrier wave. The procedure is for the receiver to ‘read’
the code, and thus obtain the time information that is transmitted by the satellite. This
procedure is aided by the fact that the receiver has a copy of the code stored within
it, and it knows roughly what to expect: it is therefore possible to make a reading on
what is in fact a very weak signal (compare a handheld GPS receiver with a satellite
television aerial).

Time offset

Figure 5.3 Time shift between codes.

The receiver, generating the code itself, determines the offset in time between the
code that it generates and the one received from the satellite, and from this deduces
the time of travel of the signal. By multiplying this travel time by the speed of trans-
mission of the signal (the speed of light), the distance from the satellite to the receiver
is obtained. In theory, it would be possible to determine the three-dimensional co-
ordinates of the receiver from observations to three satellites. This follows either from
considering three simultaneous equations with the three unknowns (X,Y,Z), or from a
geometrical analogy in which each determination of a distance describes a sphere of a
certain radius centred on the satellite, and the intersection of three spheres is a single
point. '

The model described above has taken no account of the lack of synchronisation
between the satellite time system and the receiver clock, however. Although the syn-
chronisation between the different satellites is essentially assured by each one carrying
two rubidium and two caesium atomic clocks, and these being continuously monitored
by the ground stations, the receiver has to have an independent, and much cheaper,
timing system. This then leads to the problem that, because the speed of light is ap-
proximately 300000 km/s, a 1 s offset between the satellite and receiver clocks will
lead to a 300000 km error in the determination of the distance. For this reason, the
distances so found are sometimes referred to as pseudo-ranges. The problem is solved
simply by introducing a fourth satellite, and using four distances to solve the four un-
known parameters (X,Y,Z, At ) where At is the offset between the GPS system time
and the receiver’s clock.

The reasons for the design of the satellite constellation are now apparent: four
satellites is the minimum requirement, and in fact this is virtually always possible in
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the absence of any obstructions (it should be noted that the signals can travel through
cloud, fog, rain, and so on, but cannot penetrate buildings, dense foliage, or similar
bodies). Usually between four and eight satellites will be above the horizon,

The determination of a satellite—receiver distance from code observations is sub-
jectto several sour~2s of error. These can be summarised as follows, with approximate
root mean square (rms) magnitudes as given by Langley (1997):

e Ephemeris error: caused by the difference between the satellite’s true position
and the broadcast ephemeris, and in which can also be included the errors in the
satellite clock. This will usually amount to around 3—4 m.

e Refraction: caused by the difference between the actual speed of transmission
and its assumed value. This error source can be subdivided into two compo-
nents: ionospheric and tropospheric refraction. The former has its origin in the
upper atmosphere, and is very difficult to predict. It can cause errors of several
metres in the observed range, but can be corrected by using dual frequency ob-
servations: this option is not available to civilian users, and the errors can be
around 7 m. Tropospheric refraction, on the other hand, is more predictable. It
refers to the refraction encountered in the lowest 40 km of the atmosphere, and
is dependent on temperature, pressure, and humidity. The refractive index of
the dry atmosphere is very easily modelled, and its effects are negligible: only
the wet part of the atmosphere causes any real problems, and is typically less
than 1 m.

o Multipath: caused by the satellite signal reflecting off other surfaces on its way
to the antenna, and thus taking an indirect route: it can be minimised by good
site selection. Its magnitude is dependent on the environment at the receiver,
and is typically 1-2 m.

e Receiver noise: a random error source that is a reflection of the measuring pre-
cision of the receiver. A figure of 1.5 m for the rms error is typical.

To all of these error sources, an additional category can be added: a deliberate er-
ror, known as selective availability, which limits the accuracy that can be achieved by
users of the C/A code. This is in theory composed of delta errors (fluctuations intro-
duced in the satellite clock) and epsilon errors (a deliberate inaccuracy of the broad-
cast ephemeris) although indications are that at present the latter is not implemented.
In combination with the ‘natural’ errors, selective availability limits the accuracy to
100 m in horizontal position, and to 150 m in height. These figures refer to the limits
that will not be exceeded by 95% of the observations.

The nature of the selective availability is that the errors change only very slowly
with time, and it therefore takes at least an hour before any averaging effect will reduce
the errors. To achieve an absolute accuracy of 5-10 m takes around 8 h of observa-
tions. Figure 5.4 shows a typical plot of the position determined at a stationary point
over a period of 1 h.

One further point should be noted relating to the accuracy of GPS, and that is
the way in which the geometry of the satellites affects the final accuracy of the de-
termination of the coordinates of the receiver. Essentially, if the distances measured



The global positioning system 37

Point Position over 1 hour

North

40

East

Figure 5.4 Point position over 1 h using code pseudo-ranges (SA on). (Courtesy of R. Keenan,
University College London.)

from the satellites to the receiver intersect at a shallow angle (because the satellites
are grouped in one portion of the sky), the accuracy of the three-dimensional coor-
dinates of the point will be worse than if the satellites were well distributed around
the sky. This is analogous to the situation with the determination of two-dimensional
coordinates from the intersection of measured distances that is depicted in Fig. 5.5:
although the distances are measured to the same precision in each case, the accuracy
of the coordinates will be worse if the distances intersect at an acute angle. For GPS,
this concept is conveniently expressed by a numerical coefficient, known as the po-
sitional dilution of precision (PDOP). This is the ratio of the mean accuracy of the
coordinated position to the accuracy of the original range observations: the larger this
number, the worse the geometry of the satellites. Typically, the PDOP values when
using the full GPS constellation range between 2 and 5: if some satellites are obscured
and the PDOP rises much above this range, the accuracy figures quoted above will no
longer be achievable.

This, then, is the basis of operation of all GPS receivers operating as stand-alone
units. It can be seen that the accuracy is almost entirely dependent on factors external
to the receiver: any difference in price between different models is therefore explained
by the functionality of the equipment, such as the storing of data, the use of digital map
displays, and so on.

Future developments in the design of GPS satellites, and US government policy
regarding the application of selective availability, mean that within a few years the
accuracies achievable by stand-alone GPS receivers are likely to increase dramatically
from the figures quoted here, possibly to as accurate as 5 m (GIAC, 1999).

If coordinates obtained by this method are to be integrated with data from a nation-
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Figure 5.5 Poor geometry (left) and strong geometry (right).

al survey, a datum transformation must be carried out. The coordinates will change
by up to 1 km after transformation, which is significant even for the curtent accuracy
of GPS fixes. Distortions in the local datum are unlikely to be significant, however,
and an average set of transformation parameters for the datum concerned can be ap-
plied. Most handheld receivers now on the market have stored within them a set of
transformation parameters for the datums of many countries around the world. If these
are not available, a simple shift can be derived by setting a receiver over a point with
coordinates known in the local system, and then re-arranging equation (4.2) as:

AX X X
A | =Yy [y G.1)
AZ z WGS84 Z/ local

The shifts derived in equation (5.1) can then be applied to all the other points that
have been observed with GPS.

The height information that results from this transformation is the ellipsoidal height
above the local datum. We saw in the example for the British datum (OSGB36) in
Fig. 4.3 that this approximates the height above the geoid within 4 m. This accuracy
is more than sufficient for this mode of operation.

5.4 Differential GPS using codes

The key to the improvement of the accuracy obtainable with GPS is the use of two or
more receivers to measure relative as opposed to absolute positions. That this achieves
an improvement in accuracy of almost two orders of magnitude is due to the spatial
correlation of most of the errors: that is, an error present in the observation of range
made at one receiver is very likely to be present at another receiver in the vicinity.
This is certainly true of the errors caused by selective availability; the correlation of
errors caused by the ephemeris and refraction will depend upon the distance between
the two stations. Only multipath and noise are entirely uncorrelated between the two
receivers.

The basic principle of operation is therefore to have one receiver set up at a point
of known coordinates. In this context, ‘known’ implies known in the WGS84 system,
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as local coordinate systems are entirely inappropriate for this type of computation.
The information could be obtained by the mean of a long-term set of absolute position
observations by the receiver or, more appropriately, by linking the point to a higher
order reference system through the type of observation discussed in the next section.
The effect of an error in the absolute coordinates of this station will be similar to the
effect of an error in the satellite ephemeris when calculating a vector from one point
to another; therefore, an appropriate target for the accuracy is better than 1 m.

The receiver at the known station, the reference receiver, is thus able to compare
the observed pseudo-range to each satellite with the value calculated from its own
coordinates and the ephemeris position of the satellite. From the difference between
the two, a range correction can be determined (Fig. 5.6). This range correction can
then be used to correct the range observations made at another receiver, sometimes
referred to as the rover. The efficacy of this correction will depend on the degree of
correlation between the errors at the two receivers. For example, an error in the satel-
lite ephemeris will not cause an error in the range measured at the reference receiver if
the direction of the error is perpendicular to the line from the satellite to the receiver.
In turn, this undetected error will not cause a range error at the roving receiver if it is
also perpendicular to the range, but this will be less true as the inter-station distance
increases. Similarly, the degree of correlation in the effects of atmospheric refraction
will decrease as the receivers become further apart.

&
o} computed andom——"> Rover
Reference transmitted
(fixed)

Figure 5.6 Differential GPS.

Generally, differential GPS (DGPS) will achieve an accuracy of 1-5 m, over dis-
tances up to several tens, or even hundreds, of kilometres. Figure 5.7 shows an exam-
ple plot of the position of a static receiver over a period of 1 h, as computed over a
baseline from a reference receiver of less than 1 km.

For many applications, the corrections to the observations made at the roving sta-
tion can be made after the event, once the data from the two receivers has been down-
loaded onto a computer. This mode of operation is entirely suited to the determination
of the coordinates of a series of static features for incorporation into a database. The
alternative is to carry out the corrections in real time, in which case it is necessary
to transmit the necessary information from the reference receiver to the rover. This
can be done by purchasing two receivers and a radio communication link, in which
case the reference receiver can be positioned wherever is appropriate for a particular
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Figure 5.7 Coordinates determined by DGPS over a 1 h period. (Courtesy of R. Keenan,
University College London.)

project. On the other hand, the distances over which DGPS is viable means that it
makes commercial sense to establish a network of permanent reference stations and
transmit the corrections to whoever is prepared to pay for them. The cost of the sub-
scription to such a service is offset by not having to establish a reference station and a
transmitter.

On land, the corrections can, for example, be transmitted on the side band of a
commercial radio station, in which case the outlay of the user is limited to the purchase
of an FM receiver in addition to the subscription. Alternatively, offshore users can
receive corrections via a satellite communications link.

If the coordinates obtained from this type of survey are required in the local da-
tum, rather than WGS84, they could simply be transformed to the local system en bloc
using published values of the transformation from WGS84 to the local datum. This
has the disadvantages of using general national values of the transformation, which
are likely to be less accurate that the results obtained by DGPS. In addition, any er-
rors in the WGS84 coordinates of the reference station will contribute directly as an
additional error source. The alternative is to derive transformation parameters by oc-
cupying one or more points whose coordinates in the local system are known, and
using equation (5.1).

If the survey is particularly extensive, however, it should be noted that rotations
between the coordinate systems may be significant. A typical rotation might be 5 arc
seconds, which is equivalent to 2.5 m over 100 km. This is unlikely to be a problem
very often.

The height information yielded by this method is differential spheroidal height.
The difference between this quantity and a differential geoidal height is barely sig-
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nificant over short distances at the accuracy achievable. Over longer distances (say
>50-100 km), adequate geoid information would be provided by a global earth model
such as EGM96, which can correct the differential spheroidal height through the use
of equation (3.2).

5.5 GPS phase measurements

The factor that limits the precision of GPS code observations is the effective wave-
length of the code: at 300 m for the C/A code very precise observations are impossi-
ble. The way around this is to ignore the codes (they can be removed from the signal
if they are known) and go back to the underlying carrier waves, L1 and L2, which
have wavelengths of 19.05 cm and 24.45 cm respectively. This allows the possibility
of very precise observations, as measuring a fraction of a wavelength offers millimet-
ric precision — although at the cost of an increased mathematical complexity of the
solution. Whereas the code observations represent unambiguous determinations of
distance, the phase observations measure only a fractional part of the distance, which
repeats itself every wavelength.

The basic observation is made by measuring the difference in phase between the
signal received from the satellite and one generated in the receiver. The difference in
phase so measured has two causes.

o The receiver and the satellite are not likely to be oscillating in phase in the first
place.

e The signal has had to travel a certain distance from the satellite to the receiver,
so the receiver is comparing its own signal with one emitted from the satellite
a short time previously. If the satellite were a whole number of wavelengths
away from the receiver, the two signals would once again be in phase with each
other. Hence (Fig. 5.8), the receiver is actually measuring the fractional part of
the distance A¢ , over and above a whole number of wavelengths. Subsequent
measurements in the same sequence can measure a value of A¢ as it goes beyond
a whole wavelength, so that the initial unknown number of whole wavelengths
stays the same.

The result is therefore an observation of phase which is related to the satellite-receiver
range, but in a way that is complicated by the presence of an unknown whole number
of wavelengths (the integer ambiguity) and phase differences between the satellite
and receiver clocks. The key to the solution of this problem is the fact that these
bias terms are constant, provided that the receiver continuously tracks the signal from
the satellite. It is therefore possible, in time, to acquire more and more observations
without increasing the number of unknown parameters to be solved.
There are several different approaches to solving the problem.

o A single receiver can occupy a point for a considerable period of time (at least
several hours), collecting a very large data set. In combination with a more
precise ephemeris than that broadcast by the satellites (for example the precise
ephemerides disseminated via the International GPS for Geodynamics Service,
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Figure 5.8 GPS phase observation.

as discussed in section 4.1.1) and improved corrections to the satellite clocks,
it is possible to solve all the parameters, including the three-dimensional coor-
dinates of the receiver. By definition this cannot be done in real time, and it
requires very sophisticated software, but it is capable of determining the posi-
tion of the point to a precision of around 2 cm. This type of observation is most
appropriately employed in global geodynamic studies.

e Alternatively, less time-intensive methods of dealing with the situation are based

on making the observations in differential mode, using two or more receivers.
Part of the advantage of this technique comes from the fact that it is no longer
necessary to determine the integer number of wavelengths from the satellite
to the receiver, but only the difference in the number of wavelengths from a
satellite to each receiver.

The real advantage of GPS, and what has made it a tool that has all but replaced

conventional control surveys, comes from exploiting the integer nature of the ambi-
guities, thus avoiding the need to collect data over a long period of time. Essentially
the approach is to gather just sufficient data for the processing software to be able to
recognise the integer values of these numbers. Thus, for example, if the solution to
the equations yielded as ambiguities the numbers:

451.999 43.002 875.998

then, barring coincidence, these would be recognised as 452, 43, and 876 respectively.
The situation now is that the relative distances between satellites and receivers are in



The global positioning system 43

principle known to the precision of the phase observations, a matter of a few milli-
metres. This would lead to a baseline between the stations that is precise to a similar
amount. Conversely, if a mistake had been made and the ambiguities incorrectly iden-
tified, an error of several decimetres would be introduced.

Thus, the use of GPS over short baselines is centred around the length of time
required to resolve the ambiguities to the correct values with a high degree of con-
fidence. Advances in modelling software have reduced the time required to around
5-10 min over baselines up to around 10 km long, and 1-2 min over shorter baselines.
The techniques involved are greatly assisted by the ability of modern receivers to read
the phase of the second carrier wave, L2, albeit with an increased amount of noise:
this is achieved in different ways by different makes of receiver, but most are based on
a technique of cross-correlating the P codes between the two frequencies. Generally
speaking, however, this second frequency is used only to acquire additional data for a
quick solution and not to make any correction for ionospheric refraction: over short
distances, the assumption is that this will cancel out between the two stations, which
is the main factor that imposes a distance limit to this technique.

Over most distances less than around 10-20 km, this assumption is usually valid,
and the main error source would be multipath: by definition this is site specific and
does not cancel out between stations. For phase observations this can potentially lead
to errors of up to 5 cm in the observation to any one satellite, and besides the obvious
solution of good site selection (which is sometimes impractical) the main way around
the problem is to increase the period of observation beyond the minimum required to
resolve the ambiguities.

For longer baselines, the effects of ionospheric refraction are potentially more
serious. For this reason, the emphasis is no longer on obtaining rapid solutions by
identifying the integer ambiguities, but on correcting for the effects of refraction by
exploiting both carrier frequencies. This leads to much longer occupation times, usu-
ally measured at least in hours, sometimes days.

In summary, differential phase observations with GPS are capable of determining
baseline vectors between receivers to a precision of around 1 cm: the length of time
required for this will vary from a few minutes to a matter of days, depending on the
length of the vector.

A slightly lower level of accuracy can be achieved more quickly over shorter dis-
tances through the use of kinematic techniques. The basic premise of these is that,
once the initial determination of the integer ambiguities has been made, these values
will stay the same even when the roving receiver moves to a new location, provided
that the receiver continuously tracks the signal from the satellite. As with differential
GPS using code observations, it is possible to operate kinematic phase GPS in a real-
time mode. This is usually referred to simply as real-time kinematic (RTK). The data
link is usually provided by a dedicated radio link: in the future, if it becomes possible
to use the system over longer lines, communication by mobile phones may be more
appropriate.

In principle, the accuracy of kinematic GPS is similar to that of conventional phase
observations in the static mode. It will always be slightly lower, however, as there is
no averaging over time, which means that the effect of multipath goes uncorrected.
Typically, at any one point there will be an error of around 2-3 cm.
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The procedure for kinematic GPS is first to initialise the roving receiver by ac-
quiring enough data to resolve the integer ambiguities. This can be done while the
receiver is stationary; alternatively, with the ‘on the fly’ (OTF) techniques that have
now been developed, data may be collected while the receiver is in motion. For OTF,
the position of the receiver during the initialisation period can be deduced after the
event, but not in real time.

Even if an individual signal is interrupted, it is possible to proceed provided that at
least four satellites are tracked continuously. This is because four satellites is the mini-
mum requirement for positioning and, if the position is known, when new satellites are
observed or new ones re-acquired, the resolution of the ambiguities is instantaneous
as the position is known. A complete blockage of all signals, such as would be caused
by passing under a bridge, cannot be supported, however. Under these circumstances,
it is necessary to go through the initialisation cycle once again: repeated interruptions
such as would occur in a cluttered urban environment would cause problems.

The existence of a system capable of measuring to a precision of 1 cm over several
kilometres in a short period of time has revolutionised many tasks in surveying and
geodesy. It must be emphasised, however, that what is obtained is a three-dimensional
vector in the WGS84 system. To exploit the accuracy of this to the full, great care
must be taken in the way in which the results are incorporated into a local datam.
This subject is rather more extensive in its philosophy and application than the simple
transformations that have been discussed so far, and is therefore the subject of a more
extensive treatment in section 6.5.
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Aspects of datum
transformations

6.1 Introduction

Chapters 2-4 have defined two- and three-dimensional coordinate systems, and dis-
cussed the procedure for transforming from one datum to another. If all the data and
parameters mentioned there are known, there will not be a problem. It is often (per-
haps usually) the case, however, that some or all of the information required is missing.
The aim of this chapter is, firstly, to clarify where some of the problems are likely to
occur. For these situations, the likely magnitudes of the errors caused is examined:
often, missing information is not really a problem at all, as it has little effect at the
level of accuracy that is required. If missing information is likely to cause a problem,
various shortcuts are suggested.

In general, the approach taken will be very much dependent on the accuracy re-
quirements. Since we are interested on the one hand with remote sensing and GIS
applications that will usually be dealing with data accurate to at best 1 m, and on the
other hand with surveying projects requiring an accuracy of perhaps 1 cm, the ap-
proaches differ so widely that it is most convenient to treat them separately. Sections
6.2-6.4 should therefore be read as a general introduction to some of the problems,
but with the solutions proposed being relevant mainly to low accuracy applications.
Section 6.5 deals with the high accuracy applications of GPS in surveying projects.

6.2 Knowledge of separation, N

It was stated in Chapter 1, with reference to Fig. 1.3, that a knowledge of the spheroidal
height, and hence the separation, N, is necessary for two-dimensional coordinate trans-
formations. This point is illustrated in Fig. 6.1, in which an error in the separation
(perhaps equating it to zero) effectively shifts the point P to the point /. In system A
the point P’ has the same two-dimensional coordinates as point P, but in system B the



46 Datums and map projections

two points have different coordinates. The order of magnitude of this error is given by
e=N{ 6.1)

where € is the error in the two-dimensional coordinates, latitude and longitude (in
metres), N is the separation (in metres) and { is the angle between the two normals (in
radians). Because N is at most 100 m, and a value for { of 20" (arc seconds) is quite
large, the effect on (¢,A) of ignoring the separation (effectively saying that h = H) is
of the order of 1 cm. This is significant in some geodetic and surveying applications,
but can safely be ignored in the context of remote sensing and GIS.

stem A
¢ (system A) Spheroid B

¢' (system-B) Spheroid A

o (system B)

Figure 6.1 The effects of an error in separation.

6.3 Knowledge of height, H

In many situations it is necessary to transform a set of two-dimensional information
for which no values of height are available (e.g. from a map without contours). A very
similar problem to that in section 6.2 then results, but of a larger magnitude. Another
look at Fig. 6.1 will show that if the height of the point P is assumed to be zero, a false
point P’ with different coordinates in system B results. In this situation, the order of
magnitude of the error is

e=H( - o | (6.2)

where H is the height above the geoid. In this case, 1000 m represents a large value,
if not a limit, and the order of the error is then seen to be around 10 cm.

It seems safe to assume that two-dimensional transformations to a precision of
within 1 m can always be carried out without a knowledge of height. '
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6.4 Knowledge of datum transformation
parameters

6.4.1 Sources of information

This is the most problematical aspect of the datum transformation procedure. For most
datums the parameters of the spheroid are known. This is basically because all surveys
have always had to use these values, even before the advent of satellite geodesy. In
most cases a spheroid was taken ‘off the shelf’, as in the days before computers this
saved a considerable amount of computation. It should be noted, however, that the pa-
rameters of a spheroid were occasionally modified, and it is therefore worth checking
the actual values of a and f that have been used if this is possible.

A spheroid is often quoted by name, for example Airy or Clarke 1880. There is a
danger, however, that ‘modified Clarke 1880 is misquoted as ‘Clarke 1880’ (or, in-
deed, confused with Clarke 1880 (IGN), Clarke 1880 Palestine, Clarke 1880 I, Clarke
1880 11, or Clarke 1880 III).

The iransformation parameters from a datum to WGS84 (AX, AY, AZ, plus ro-
tations and scale if necessary) are more of a problem. In some cases these are re-
garded as classified information. In most developed countries the values are known
(within the accuracy limitations explained in section 3.1), and are held by the relevant
mapping authority. It is far more satisfactory, however, to have a central source of
information to refer to. Several reports on this have been published by the Defense
Mapping Agency (DMA, 1997), the latest addition including additional GPS survey
information to update the datum transformation tables. For the European region, an
alternative is University of Zurich (1989).

For high precision uses of GPS, the derivation of transformation parameters is
described in section 6.5.

6.4.2 Estimating the parameters

If no information is forthcoming from any of the sources in section 6.4.1, one possible
alternative is to attempt to estimate the transformation parameters from a knowledge
of the geoid in the region. As a demonstration of this technique, consider the situation
in the UK as an example.

The British datum, OSGB36, was effectively established by maintaining the po-
sition of the spheroid at Greenwich from the nineteenth-century survey. Therefore
OSGB36 is parallel to and coincident with the geoid at the point:

¢ =51°28"40" N A =00°00"00" E

At this point the geoid—spheroid separation, N, and the deviation of the vertical, { ,
are both zero in OSGB36. Using a global Earth model such as EGM96, the values of
N and the components of { can be computed with respect to the WGS84 datum. The
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relevant values are:

N =45.796 (separation)
§=-2"  (componentin latitude)
1= 43" (component in longitude)

Using these values, the coordinates of the point at Greenwich can now be found in both
the local system and WGS84. Adopting the terminology of Fig. 1.3 and converting
both sets of coordinates to cartesian values gives

o for WGS84:

¢ = 51°28'42"N X = 3980611
A = 00°00' 03" W — Y =0
h = N=45796 4 4966859

o for OSGB36:

& = 51°2840"N X =3980244
A = 00°00' 00" W — Yy =358
h =N=0 Z =4966420

A direct comparison of the cartesian coordinates then yields the transformation
parameters. Putting them alongside the known values gives the results shown in Table
6.1. The method has given very good results in the X and Z directions (within 10 m),
but a value for ¥ that is over 50 m from the known value. The most probable cause
of this is a slight rotation between the two datums, which on the Greenwich meridian
would manifest itself as a discrepancy in the ¥ direction. This geometrical approach
is not able to detect this effect, and rotation errors of this magnitude are likely to result
from any similar attempt to estimate the transformation parameters.

Table 6.1 Attempts to derive transformation parameters

AX AY AZ

True values —375 111 —431
Estimates —367 58 —439

Another potential source of error when applying this technique is that the point of
origin is likely to be unknown. Therefore, attempting to estimate the transformation
parameters from such a geometrical approach should be used only for datums that
cover a very limited area, and when there is no possible alternative.

6.4.3 Simple two-dimensional transformations

In some cases it may be necessary to transform two-dimensional data on one datum
into another datum. The transformation parameters may be unknown, or a simpler
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transformation procedure than the one outlined in Fig. 1.3 may be required. An exam-
ple of this might be maps of adjacent countries which are on different datums.

If common points can be identified in both systems, then one possibility is to
transform from one datum to the other by a two-dimensional transformation, either a
simple similarity transformation or a more complex affine or polynomial one (these
are treated more extensively in Chapter 12). The extent to which this is possible will
depend on the extent to which the relative positions of points are altered in transform-
ing from one datum to another.

As an example of the effect of a datum transformation on coordinates, consider the
test area of approximately 100 x 100 km that is defined by the four points in Table 6.2.
The coordinates of Table 6.2 are defined on a datum with the spheroidal parameters

a=06378388m f=1/297

These are converted to a datum with the spheroidal parameters
a=6378136m f=1/298.257

The following datum transformation parameters are applied:

AX =200 m AY =200 m AZ =200m

Table 6.2 Corner points of 100 km test square

Point Latitude Longitude
A 50°00°  00° 00
B 50°000  01°24
C 50° 54’ 00° 00/
D 50° 54 01° 24

The resulting coordinates on the new datum are shown in Table 6.3. Converting
these into coordinate changes in metres gives the results shown in Table 6.4. Although
the changes are substantial, it can be seen that the spread is less than 8 m: a similarity
transformation could therefore model this effect to within a couple of metres. This is
not accurate enough for geodetic or surveying applications, but in many other contexts
it is more than sufficient.

Table 6.3 Coordinates on the new datum

Point  Latitude Longitude

A 49° 59’ 56.29"  00°00'10.04”
B 49° 59’ 56.17"  01°24'09.79"
C 50° 53/ 56.16”  00°00'10.23"
D 50° 53/ 56.04"  01°24'09.98"

In practice, the most common source of problems in applying a two-dimensional
transformation to convert between data sets is the change in the projection rather than
the change in datum; for this reason, the subject is given a somewhat more extensive
treatment in Chapter 12,
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Table 6.4 Coordinate changes after transformation

Point Latitude Longitude
A —115.0485 200.09047
B —118.7578 195.14186
C ~118.9318  200.07987
D —122.689 195.13152

6.5 Datum transformations for precise applications

6.5.1 Distorting to fit the local datum — or not, as the case may be

This section considers the datum problems that arise when dealing with applications
that require a high level of accuracy when transforming from one datum to another.
The most obvious example is in surveying points with GPS using differential phase
observations, and when the final coordinates are required to be expressed in a local
datum such as OSGB36.

To begin with, it is helpful to consider what the final aim of the survey is; that is,
the use to be made of the coordinate information that is derived. This has a particular
bearing in situations where GPS data is being transformed into a datum that contains
the types of distortion discussed in section 4.2.2.

The problem is essentially one of how closely these distortions should be followed
when transforming. To take an example, an engineering project (such as the construc-
tion of a road or railway) should usually use coordinates that are in sympathy with
a local coordinate system. On the other hand, building a structure in the right place
from the point of view of, say, land ownership, is not a very exacting requirement
(20-50 cm might suffice, for example). By comparison, it is quite important that the
internal geometry of the project should be preserved: it is not acceptable to have kinks
in the railway where the local datum is distorted, and it is usually helpful if mea-
surements carried out with ground survey equipment can build onto the GPS control
without a continuous need for distortions to be introduced. To take a counterexample,
if GPS is being used to locate features whose coordinates are given in the local system
(underground utilities, perhaps), transforming precisely into the local system — with
all its distortions — is of paramount importance.

One way of treating either of these situations is to derive the transformation para-
meters as part of the project, by using points with coordinates that are known in the
local system (for example Ordnance Survey triangulation points). For situations where
the internal geometry of the project is of more importance than sympathy with existing
mapping, relatively few control points are needed. For the opposite case, a large
number of control points, well distributed across the survey area, will be necessary.
In the latter case, an alternative is to use a transformation service provided by an
organisation such as the Ordnance Survey. The advantage of this is a consistency
between the transformations used by different organisations; the disadvantages are that
it is not free and it is less appropriate for engineering projects that require consistent
geometry.

One of the main problems that will be encountered in deriving coordinates in the
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local system is the influence of the geoid. Moreover, the procedure is not uniquely
concerned with datums: a knowledge of the projection used for the local coordinates
will also be required. It will be assumed in this section that all information pertaining
to the projection is available: readers unfamiliar with map projections should refer to
Chapter 7.

6.5.2 Transformation models

In order to derive transformation parameters between WGS84 and a local system,
it is necessary to include several known points in the survey. An example of such a
scheme is shown in Fig. 6.2. The first point to be noted about Fig. 6.2 is that the known
points are well distributed across the area to be surveyed, rather than being grouped
to one side. This is important, as the parameters derived will be applicable only in the
area of the known control points and extrapolation beyond this area is likely to cause
problems. An example of an unacceptable configuration is shown in Fig. 6.3.

Figure 6.2 Including known points in a survey. Triangles indicate points known in the local
system; circles are new points; the lines denote GPS vectors.

Figure 6.3 Poor geometry of known and unknown points.

For very small surveys, it is possible to use only one known point for deriving
the transformation, but this would necessarily involve using the very simple transla-
tion given in equation (5.1) and ignoring the rotations. As the latter would typically
be around 10” (due to the combined effect of coordinate errors and the geoid), this
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approach would be valid only over distances up to 200 m if an accuracy of 1 cm is
required. The rest of this section will assume that more extensive surveys are under
consideration.

It is a requirement of using GPS in the relative mode that the absolute coordinates
in WGS84 are known to an acceptable level of accuracy. For surveys that aim to
achieve a relative accuracy of 1 cm over 10-20 km, the absolute coordinates should
be known to within 10 m. If the survey has been designed to include a point that is
part of a more accurate control survey, this should not be a problem. Alternatively,
as outlined in section 5.3, absolute coordinates of this accuracy can be obtained with
around 8 h of observation at a single point. The result is then a set of coordinates that
are accurately known with respect to one another, but ‘floating” in WGS84 by up to
10 m. Again, the concept of a ‘quasi-WGS84” datum is useful here. It is necessary
that the same ‘quasi-WGS84’ datum is used throughout the project, and therefore
that either the absolute coordinates of only one point are determined, or a ‘best fit’ is
carried out to the absolute determination of position made at all points in the survey.

The task is then to transform from this datum to the local one. A possible model
for the transformation equations was shown in section 4.2.2 and equations (4.3)-(4.4).
This is not the only possibility, however. An alternative model is one that makes
the rotation about a point at the centre of the points to be transformed, rather than the
centre of the coordinate system. The result will be the same, but the latter approach has
the advantage of making the transformation parameters so derived easier to interpret.
In the former approach, a rotation atound the coordinate origin (at the centre of the
spheroid, several thousand kilometres away) is very similar to a translation, and a large
additional shift may be needed to compensate for this. Where the rotation is about a
more local point, there is very little correlation between the shifts and the rotations,
and the shifts derived will be much closer to the typical value for the offset between
the two datums.

The transformation about a local origin is expressed through:

X AX Xo X —Xo
Y =AY |+ | |+uR|[Y Y (6.3)
z WGS84 AZ Z A/ Tocal
where
Xo
Yo
Zy

are the local coordinates of a point at the centre of the survey, and other terms are as
defined in section 4.2.2. Note that both of these models are referred to as similarity
transformations, as they preserve the shape of the original data.

The task now is to derive the seven unknown parameters (three translations, three
rotations, and one scale) of the transformation model by comparing the coordinates
from the two systems. Any commercial GPS package will be able to do this: the
least squares formulation is given in Appendix section A3. It should also be noted
that this procedure requires both sets of data to be in cartesian form, and therefore
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coordinates quoted in a projected coordinate system and with orthometric heights must
first be transformed to the cartesian form (this is a standard part of most GPS software
packages).

6.5.3 The use of redundant data

To derive the seven parameters of a similarity transformation, seven pieces of infor-
mation are needed. This could in theory be provided by two control points that are
known in three dimensions and one bench mark (known in height only). In fact, the
more control points that are available the better. Once the parameters have been de-
rived, it is possible to apply these to the known points and note the agreement between
the original coordinates and the transformed values. If there is no redundancy the fit
will be perfect, even if there was an error in the coordinates given for the known points.

Such an error could occur through incorrect keying-in of the data; alternative
sources of error are that the control point could have moved (for example through
local subsidence) since the last publication of its coordinates, or even that a monu-
ment may have been demolished and rebuilt in a slightly different location. In effect,
this would mean that, in an effort to fit the GPS data to the distortions of the local
system, additional distortions have been introduced that are not justified.

Therefore, a minimum of three control points, each known in three dimensions,
is needed in order to provide redundancy and check for errors. Even in this case,
with nine pieces of information, the redundancy is only 2. There would be a tendency
for the residuals (the difference between the original coordinates and the transformed
values) to be much smaller than the size of any errors present: the transformation
would stretch things a bit, rotate a bit more, and generally do all it could to fit to the
given values. An example of this is given in the case study in section 13.1.

Therefore, it must be emphasised once again that as many control points as possi-
ble should be used, and that they should be well distributed across the survey area.

6.5.4 Geoid problems

The classic procedure for datum transformations outlined in section 1.5 assumes that
the geoid separation is known. If it is, it should be added to the orthometric heights
quoted for the control points to derive heights above the spheroid.

This section will consider the implications of geoid information not being avail-
able. By way of illustration, a hypothetical data set will be used with different geoid
characteristics. The points used are shown in Fig. 6.4. In the figure, points A, B, C,
and D are known. The coordinates of P are also known (see Table 6.5), but will be
treated as unknown in order to test the quality of the transformation.

The four known points cover an area of 25 km square. It is assumed that the local
datum is parallel to WGS84, but translated by 100 m in each dimension, and that there
are no distortions present in the local datum. Such a paragon of perfection is unlikely,
and is used here only to isolate the effect of the geoid. For a more realistic example,
in which several sources of error are present simultaneously, see the case study in
section 13.1.
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AA Ap

Ac AD

Figure 6.4 Test data set.

The first case to consider is the one in which there is a uniform separation of the
geoid across the whole area. If the geoid separation is unknown, the only option is to
enter it as zero and assume that the ellipsoidal heights are the same as the orthometric
heights. In this case, the coordinates of the control points will all be shifted. For
a sufficiently small area, however, they will all be shifted by the same amount (for
a uniform value of the separation) and in the same direction. This is illustrated in
Fig. 6.5. ,

A seven-parameter similarity transformation can cope with a uniform shift, as this
will be included in the translations that are derived. What does cause a problem is a
change of shape of the control points. The extent to which this happens is a function
of the maximum angle between the shifts caused at the different control points, which
is the same as the angle between the spheroidal normals. A general rule of thumb for
the relative coordinate shift caused by this effect is

D

€
where ¢€ is the resulting error, D is the extent of the survey (in kilometres), and N is
the approximate size of the separation that has been ignored (and has the same units
as €). For a survey of 25 km in extent and a separation of 10 m, this amounts to around
0.04 m. This is significant at the required accuracy level, although a certain amount of
this effect is absorbed by the scale factor of the transformation.
To illustrate this, let us assume that the geoid separation is a uniform 10 m in
the test area. Thus, although the heights are all 50 m above the ellipsoid, they will

Table 6.5 Coordinates of test points

Point E N h

A 400000.00 125000.00 50.000
B 425000.00 125000.00 50.000
C 400000.00 100000.00 50.000
D 425000.00 100000.00 50.000
P 412500.00 112500.00 50.000
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Spheroid

Figure 6.5 A uniform value of the separation.

Table 6.6 Transformation parameters for uniform geoid shift

AX  —106.302 m

AY  —99.799 m
AZ 107762 m
U —1.57 ppm

actually. be quoted as 40 m above the geoid. If the transformation algorithm then
assumes (incorrectly) that these are spheroidal heights, the transformation parameters
are as shown in Table 6.6. The values of the rotations are not shown in the table, as
they are all nearly zero.

Clearly these parameters are ‘wrong’ in the sense that the translation is known
to be 100 m in each dimension, and the scale should be true. What has happened,
however, is that the extra 10 m shift caused by the geoid has been absorbed in the
transformation.

Applying these parameters to the whole data set results in coordinates for P as
shown in Table 6.7. In other words, the plan coordinates are correct to a millimetre
and the spheroidal height that the program thinks it has found for P is the correct geoid
height.

As well as being able to cope with a uniform shift of the geoid, a similarity trans-
formation can also deal with a uniform tilt, by adjusting the rotations determined dur-
ing the transformation. This can be illustrated in the test data set by assuming that the
geoid slopes as a plane from a height of 10 m on the western side (in line with A and
C) to 11 m on the eastern side (in line with B and D). Therefore the levelled heights
of the four control points will be as shown in Table 6.8.

Applying the same procedure as before results in the transformation parameters
shown in Table 6.9. Although the other parameters are much the same as before,

Table 6.7 Coordinates of point P after transformation

Point E N h
P 412500.000 112500.000 40.000
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Table 6.8 Orthometric heights for uniform slope of the geoid

Point H
A 40.000
B 39.000
C 40.000
D 39.000

Table 6.9 Transformation parameters for uniform geoid tilt

AX —-106.617 m
AY —99.790 m
AZ —108.150 m
Rotation of X 6.40"
Rotation of Y -0.22"
Rotation of Z —5.20"

U —1.65 ppm

the rotations are now significantly different, as the coordinates rotate to adapt to the
sloping geoid.

Applying these parameters to the data set gives the results shown in Table 6.10.
The plan coordinates are again correct within 1 mm, and the height is also the expected
value, as a uniform slope of the geoid would result in a separation of 10.5 m at P.

The similarity transformation is thus very adept at dealing with uniform slopes and
shifts of the geoid. This will quite often suffice for surveys that cover just a few kilo-
metres and are not seeking the highest accuracy. What the similarity transformation
cannot cope with is a non-uniform change in the geoid: perhaps a bulge or smaller un-
dulations. In the previous example, as the point P was not included in the derivation of
the transformation parameters, any value of the separation other than that implied by
a uniform tilt and shift of the geoid would not have been corrected by this procedure.

If the undulations of the geoid are sufficiently large to cause a problem at the
accuracy required, and no model of the geoid is available, the only solution to this
problem is to incorporate more information into the transformation and to alter the
model used. It is possible, for example, that, although no extra triangulation points
are available in the area surveyed, there may be several bench marks. If these points
are included in the GPS survey, a comparison may be made of the heights derived by
the similarity transformation with the original bench mark heights. The differences
between these two figures will not represent the geoid—spheroid separation itself, but
in the absence of observational errors will represent a residual value of the separation
over and above the overall shift and tilt.

If the residuals so found are indeed due to finer undulations of the geoid, the
expectation would be that they are highly correlated, certainly over short distances.

Table 6.10 Coordinates of point P after transformation

Point E N h
P 412 500.000 112 500.000 39.500
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A random spread of residuals with no apparent pattern is an indication more of poor
quality GPS data or bench mark heights than of short wavelength undulations of the
geoid (this is particularly the case in low-lying terrain). Where the residuals do display
a pattern it is possible to interpolate the geoid values between bench marks to obtain
orthometric heights at the points newly surveyed by GPS. This could be done either
by simple methods of interpolation, or by more sophisticated statistical techniques
such as least squares collocation. A full description of the latter may be found in
Moritz (1980), and an example of its application is given as part of the case study in
section 13.1.



7
Fundamentals of map
projections

7.1 Introduction

The fundamental coordinate system for surveying and mapping is a set of geodetic
coordinates related to a particular datum. It is then necessary to consider how to ar-
range the data so that it can be placed on a flat surface. There are two reasons for
doing this. The first, and most obvious, is presentational. Whether the data is to be
shown on a paper map or on a computer screen, it must of necessity be presented in
a two-dimensional format. The second reason for rearranging the geodetic coordi-
nates in two dimensions is computational. Even a simple concept such as the distance
between two points becomes excessively complex when expressed in spheroidal for-
mulae, and wherever possible it is more desirable to carry out computations in a simple
two-dimensional coordinate system. A projection, then, is defined as an ordered sys-
tem of meridians and parallels on a flat surface. It should be immediately apparent
that it is impossible to convert a sphere or a spheroid into a flat plane without in some
way distorting or cutting it. Tt follows that there is no single method for doing this;
hence the proliferation of types of map projection.

This chapter is concerned with introducing some of the fundamental concepts of
map projections, before looking in detail at the different types of projection. Included
here are definitions of grids and graticules, and of scale factor, as well as a consid-
eration of the use of spherical or spheroidal models of the Earth in the context of
projections, the use of different developable surfaces, and the criteria to be considered
in designing a projection for a specific purpose. Some fundamental defining param-
eters have more conveniently been introduced in the context of specific projections,
although they have a universal application. For reference, these are:

¢ false coordinates and the projection origin: discussed in section 8.1 with refer-
ence to the cylindrical equidistant projection

o re-scaling of projections: discussed in section 8.3 with reference to the Mercator
projection

zo
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e zoning: discussed in section 8.4 with reference to the transverse Mercator pro-
jection

e convergence, or the angle between grid north and true north: also introduced in
section 8.4.

An example of the development of formulae to convert between geodetic and pro-
jection coordinates is given in section 8.1. A summary of the parameters needed to
define a projection is given in Chapter 11.

Chapters 8-10 consider many different methods for projecting coordinates: it will
be seen that each of these methods requires several defining parameters. It is there-
fore important to distinguish between a projection method (for example the trans-
verse Mercator, the polar stereographic, and so on) and a projected coordinate system,
which is composed of the method as well as the defining parameters (for example the
British National Grid, the Universal Transverse Mercator system, and so on). This
distinction in terminology is a useful one, and will be encountered, for example, in
the definitions of the GeoTIFF format for transferring geographically referenced data
(GeoTIFF, 1995).

7.2 Spheres and spheroids

As mentioned in the introduction, the fundamental coordinate system is a geodetic one
related to a spheroid. The relative positions of points in such a coordinate system are
not the same as they would be on a sphere. That is to say, if accuracy is to be preserved
it is necessary to develop formulae for treating a spheroid rather than a sphere. That
said, it should be borne in mind that the flattening of most spheroids is of the order of
1 part in 300. It is therefore apparent that the shape of a particular projection when
applied to the sphere is very similar to the shape when it is applied to the spheroid.
There are significant differences in the coordinates that result, which will certainly
be apparent on a large scale map, but the sphere is nevertheless useful for giving an
insight into how the resulting map has been distorted. Most of the explanation that
follows therefore uses the sphere as a model of the Earth. Full spheroidal formulae
should, however, normally be used in practice.

7.3 Grids and graticules

The appearance of meridians and parallels on the projection depends on the type of
projection that has been used. In general they are an arrangement of straight or curved
lines, as shown for example in Fig. 7.1. This set of parallels and meridians, as seen
on the map, is known as the graticule. On some maps it may not be shown at all; on
others it may be noted around the border of the map and shown in the middle as a
set of tick marks (for example on Ordnance Survey 1:50 000 maps, where blue tick
marks show the graticule at 5 intervals),

This graticule does not constitute the basis of a coordinate system that is suitable
for computational purposes or for placing features on the projection. Instead, a rectan-
gular coordinate system known as the grid is superimposed on the map (see Fig. 7.2).
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Figure 7.1 An example of the graticule.

This grid may be given coordinates x and y, or if appropriate eastings (£) and nor-
things (N). This may seem a rather obvious point, but it is important to establish the
difference at this stage between a graticule and a grid.
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Figure 7.2 A grid superimposed on the graticule.
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7.4 Scale factor

Features on the surface of a sphere or a spheroid undergo distortions when projected
onto a plane. It is necessary to have a precise definition of the amount of distortion
that has resulted. This is provided by the definition of the scale factor, which is given
the symbol k in this text. Then

__ distance on the projection

7.1
distance on the sphere .1

This parameter will be different at each point on the projection, and in many cases will
have different values in each direction. Equation (7.1) can therefore be understood to
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apply in general to only a short distance (in theory infinitesimally short). For longer
lines, the relevant parameter is the integrated mean of the point scale factors along the
whole length of the line: section 7.7 discusses the point at which a short line becomes
along one.

It is important to understand that this scale factor results purely from the act of
projecting to a flat surface and is therefore unrelated to the map scale (a number such
as 1:50000). The ideal value of scale factor is 1, representing no distortion. It should
also be emphasised that a distortion of this type is not the same as an ‘error’ in the
map, as the rules governing it are clearly defined and the true coordinates can always
be recovered if the parameters of the projection are known.

It will often be useful to consider what happens to a small square of dimension
(1 x 1) on the surface of the sphere when it is projected. In the general case the
distortion in the direction of the parallels will be different from the distortion in the
direction of the meridians. Let kp represent the scale factor along a parallel, and ky
represent the scale factor along a meridian. With reference to Fig. 7.3, the square is
then projected as a rectangle of dimensions (kp x kn). It will be seen in the examples
of projections that follow that the unit square is often subjected to a rotation as well.

ke

Sphere Projection

Figure 7.3 Projection of a unit square.

7.5 Developable surfaces

It is possible to derive a set of formulae to convert geodetic coordinates to grid coor-
dinates in purely mathematical terms. Historically, projections were derived by first
projecting from the sphere to an intermediate shape, which was of such a nature that it
could be unravelled without distortion. This remains a useful concept for categorising
and describing map projections. The principal forms of these intermediate surfaces
are the cone, the cylinder and the plane itself. The advantage of these shapes is that,
because their curvature is in one dimension only, they can be unravelled to a plane
without any further distortion. The developable surface is brought into contact with
the sphere, and a set of rules is formulated for the way in which features are taken
from the sphere onto that surface. Examples are shown in Fig, 7.4.

The rules for transferring features from the sphere to the projection are discussed
in section 7.6. Before looking at these in detail, however, the general point can be
made that in the region around the point or line of contact between the two surfaces
the scale factor distortion will be minimal. In fact, where the two surfaces are touching
the scale factor will be equal to 1.
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Figure 7.4 (a) cylindrical surface; (b) conic surface; (¢) plane surface.

The choice of developable surface will therefore be dictated by the geographical
extent of the region to be mapped. In some cases it is required to project the whole
Earth; in others, however, a projection will apply only to a selected area. Thus, for
example, a cylindrical surface (Fig. 7.4a) is appropriate for mapping the equatorial
regions as it is touching the sphere along the equator. A conic projection (Fig. 7.4b) is
good for mapping areas of mid-latitude with a large extent in longitude, as the cone is
in contact with the sphere along a line of latitude.

The characteristics of the developable surfaces have only been given in outline
here: it is, for example, possible to orientate the surface at different angles from those
shown here, or to change the shape of the cone. These aspects are dealt with more
fully in Chapters 8-10.

Cones, cylinders and planes are useful for gaining an insight into the appearance
of a projection. This is extremely useful in situations where the parameters of the
projection are unknown and it is necessary to try to guess them, a situation discussed
in section 12.4. It should be noted here, however, that they are not a necessary step in
forming a projection. In general, equations can be derived of the form:

(E.N) = f(6,A) (7.2)

which express the grid coordinates as a function of the geodetic coordinates without
reference to intermediate developable surfaces. Indeed, the equations for all the above
projections could be given in this form without mention of cones and so forth, and in
this case expressions for aspects such as scale factor and convergence could be derived
by differentiation.

Most of the more complex projections which depart from the simple forms in
the following chapters are usually developed to represent the whole Earth in some
way. and so are of less relevance to surveying, remote sensing and GIS. There are
exceptions to this, however, such as the New Zealand map grid.

Most large scale mapping is likely to be based on transverse Mercator, Lambert
conformal conic, and to a lesser extent the azimuthal stereographic and oblique Mer-
cator projections.
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7.6 Preserved features

Having selected the developable surface, it is necessary to devise a set of rules for
transferring coordinates from the sphere. In theory, there is an infinite number of ways
of doing this, and the choice will depend on the purpose for which the projection is
devised.

It is not possible to devise a projection without introducing distortions. In general,
the shape, area and size of features on the surface of the sphere will be different when
transformed to the projection. The usual approach is to attempt to preserve one of
these, usually at the expense of all the others. For example, it may be required that
certain of the distances as measured on the sphere should be undistorted when shown
on the projection. It is obviously not possible to preserve all distances, as this would
then be achieving the unachievable goal of an undistorted projection. It may be instead
that the distances along all meridians should remain undistorted, which is the same as
saying that

kv = 1 (7.3)

or the scale factor along a meridian is equal to 1. The effect on the projection of a unit
square is shown in Fig. 7.5. Such a projection is said to be equidistant. It can be seen
that there remains a scale factor along the parallel which is not equal to 1, and that the
shape and area of the square have both been distorted.

1

1 —-——-—) k=1

Sphere Projection

Figure 7.5 Projection of a unit square preserving distances along the meridians.

An alternative to this type of projection is one that attempts to preserve area, and
is therefore termed an equal area projection. In such a situation we have

knkp = 1, (7.4)

or in other words the area of the projected unit square remains equal to 1. This is
illustrated in Fig. 7.6.

The other principal classification of projections is that which preserves the shape
of features. This is known as an erthomorphic or, more commonly, conformal projec-
tion, and the relationship between the scale factors is

kv = kp (1.5)

This is illustrated in Fig. 7.7.
In preserving shape, a conformal projection is therefore preserving angles as well.
For example, the angle between the side of the unit square and the diagonal is 45°:
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Figure 7.6 Projection of a unit square preserving area.
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Figure 7.7 Projection of a unit square preserving shape.

this is the angle that would be measured by someone making the observation on the
ground. In Fig. 7.7, the angle between the side and the diagonal is also 45°. This is
not the case, however, in either Fig. 7.6 (the equal area projection) or Fig. 7.5 (the
equidistant projection). For this reason, the conformal projection is the one of most
significance in land surveying, as it means that angles measured on the ground can
be transferred to the projection for use in computations. A conformal projection is
therefore one of the most frequently used, and is likely to be the basis of almost all
large scale mapping.

Finally, it should be noted that the three types of projection mentioned above,
although the most commonly used of all projections, do not constitute an exhaustive
list. Other types are possible, and are sometimes used, which preserve neither shape,
area nor any distances. Some of these will be referred to in later sections.

It should be emphasised here that the unit square used in these examples has to be
a very small one for the conclusions drawn here to be exact: for bodies of finite size,
some of these assumptions can break down. This point is treated more extensively in
Chapter 12.

In summary, most projections may be classified firstly according to the shape of
the developable surface, which is dictated primarily by the geographical area to be
mapped, but also in part by the function of the map, and secondly by the features on
the sphere which are to be preserved on the projection.
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7.7 Computational aspects

From a traditional land surveying point of view, there are two principal aspects to
computing coordinates on projections. The first concerns distances, and the second
concerns angles.

The basic principle of transferring a distance measured on the Earth to one to be
used on a projection has essentially been covered by equation (7.1) in section 7.4. This
can be rearranged as

distance on the projection = k x distance on the sphere (7.6)

That is, any measured distance must be multiplied by the appropriate scale factor in
order to use it on the projection. This procedure is simplified somewhat by the fact
that most projections used for survey computations are conformal. Hence, the scale
factor at a point will be the same in all directions.

In section 7.4 it was pointed out that the definition of scale factor applies in theory
to lines of infinitesimally short length. In practice, the scale factor changes so slowly
across a projection that a single scale factor can often be considered as applicable to
all the distances in one survey, rather than having to compute a separate one for each.
How slowly? And how significant is the change in distance as a result of applying
the scale factor? In part, the answers to these questions will depend on the particular
projection but, as the area that any one survey projection covers is restricted in order
to avoid excessive corrections of this type, a transverse Mercator projection applicable
to a zone 6° wide may be taken as a suitable example and inferred as being typical
of most survey projections. (Note the distinction here between a ‘survey’ projection
used for base mapping and computational purposes and ‘other’ projections where the
object may be the presentation of data and the distortions very large.)

A mid-latitude country mapped on a transverse Mercator projection has a maxi-
mum scale factor of around 1.0004. This means that a distance of 100 m as measured
on the ground should be scaled to 100.04 m when used on the projection, a correction
that is certainly significant when compared with the accuracy that may be obtained
with an electromagnetic distance measurer (EDM).

The region with the most extreme rate of change of scale factor is on the edge of
the projection. Over a distance of 5 km, the scale factor may, for example, vary from
1.00043 at one end of a line to 1.00039 at the other. The error introduced by using
the scale factor at one end of the line, rather than the average computed over its whole
length, would in this situation be around 8 cm. A similar calculation over a distance
of 3 km in the worst case scenario shows a potential error of 3 cm.

For a target accuracy of 1 cm, and distances over 1 km, it would therefore be
advisable to calculate a scale factor for each line. This can be done either by using the
mean of the end point values of scale factor or by using Simpson’s rule (Allan, 1997a)
for higher precision. For a project spread over an area of less than 1 km?, it will nearly
always be acceptable for a general scale factor to be used for the project as a whole.

The correction to be applied to angles arises because, in general, the straight line
observed between two points does not plot as a straight line on the projection. Stan-
dard trigonometric calculations on the coordinates, distances, and angles assume that
all lines are straight, and so a correction has to be applied to obtain the angle that
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would have been observed along the straight lines on the projection. This is illustrated
in Fig. 7.8. As the magnitude of this correction is proportional to the length of the
line, and is never large, its significance has greatly diminished with the use of GPS
in place of triangulation over long distances. At its most extreme on the UK National
Grid it reaches 3" over a distance of 5 km, and 6" over 10 km. For the vast majority of
modern surveys it may therefore be safely dismissed. Otherwise, a text such as Allan
{1997b) may be consulted.

Actual
observed line

< Straight line on projection

Correction angle

Figure 7.8 Difference between actual line and projection line.

7.8 Designing a projection

In many applications, those wbrking with map projections will be using an existing
projected coordinate system, and the task will be to identify the projection method and
the associated parameters. In other situations it is necessary to design a projection for
a particular purpose, in which case the choice of projection method and parameters is
up to the user. In such a case it is first necessary to define what is meant by a suitable
projection. A suggested order of criteria is given below.

1. It should preserve any properties that the use of the map dictates. That is, if
the map is to be used to measure the areas of features, the projection must
be an equal area projection. Alternatively, if it is to be used for surveying or
navigation, the shape must be preserved and the projection has to be conformal.

2. A good projection is one that minimises the scale factor over the region; that
is, the scale factor must be everywhere as close to unity as possible. In doing
this there may be some goal for the maximum allowable scale factor distortion,
which may lead to a situation where a single projection cannot achieve the de-
sired result and the area must be split up into zones. This adds to the complexity
of the situation, and makes it difficult to carry out computations between points
in different zones. In such situations, it may be that using a projected coordinate
system is no longer appropriate.

3. Any additional properties would usually be considered after the scale factor. It
may be required, for example, that the appearance of the graticule should be as
simple as possible, or that meridians should be parallel to each other. In some
circumstances this might be considered more important than scale factor: for
example, the Mercator projection is used in navigation because of the parallel
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meridians, even though it has a higher scale factor distortion than some other
projection methods.

Hints as to which projection is most likely to achieve the above goals are given in
the descriptions of the projection methods in the following chapters. For example, the
transverse Mercator projection is suitable for regions that are longer in their north—
south extent than their east—west extent, and conic projections are suitable for mid-
latitude regions with a large extent in longitude. An example of the thinking involved
in this process is given in the case studies in sections 13.2 and 13.3.



8
Cylindrical projections

8.1 Cylindrical equidistant projection

Following the rules and procedures outlined in Chapter 7, a cylindrical equidistant
projection is formed by bringing a cylinder into contact with the sphere and ‘peeling’
the meridians off the sphere and onto the cylinder without any distortion. This main-
tains the feature that &y = 1. In so doing, it is necessary to stretch each parallel of
latitude to be the same size as the equator. If the circumference of the equator, Leg, i3
given by ‘

Leq =27R (8.1)

where R is the radius of the spherical Earth, and the circumference of a parallel of
latitude ¢ is given by

Ly =2nR cos¢ (8.2)
then, by the original definition of scale factor in equation (7.1),
2nR 1
o= — et (8.3)

- 2nRcos - cos -

An example of this projection for the European region is shown in Fig. 8.1. The
features to be noted are:

e Aswith all normal cylindrical projections, the meridians are straight and parallel
to each other.

e The distances along the meridians are undistorted.

¢ The scale along the equator is true, but the scale of all other parallels becomes
increasingly distorted towards the poles, with the extreme case of the poles
themselves being represented as straight lines. Here it should be noted that

$ec90° = (8.4)

In consequence, the shape and the area become increasingly distorted towards
the poles.

68
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e The flat, square appearance of the graticule leads to the French term plate
carrée, which is sometimes also used in English.

Figure 8.1 Cylindrical equidistant projection.

In computational terms, it is necessary to have a set of formulae to determine the
coordinates of points on the map (E,N) given their geodetic coordinates. The first
step is to select an origin for the projection. Here it may be conveniently chosen, for
example, as

6o =30° (the origin of latitude)
Ao=0° (the origin of longitude)

The x or E (eastings) coordinate is calculated as the distance along the equator between
the projected point and the origin, or

E = RAA (8.5)
where
AL = (A—Ao) (8.6)

and is expressed in radians.
Similarly, the y or N (northings) coordinate is expressed as the distance along a
meridian from the origin to the projected point, or

N =RA¢ (8.7)
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where

A = (¢ — o) (8.8)

This then has the effect that any points south of 30° N or west of 0° will have negative
coordinates on the projection. This is generally undesirable, and is avoided by adding
a suitably large number to all the coordinates obtained so far, Thus:

E'=E+E (8.9)

N =N+No (8.10)

where E' and N’ now represent the false eastings and false northings of the point and
Ey and Ny are the false eastings and false northings of the origin, which are parameters
to be defined for the projection. The original coordinates E and N are referred to as
the true eastings and northings.

It is also possible to derive the geodetic coordinates of any point whose projection
coordinates are known:

N — Ny

R (8.11)

o=¢do+

E'—Ey

R (8.12)

h=ho+

Several important points should be noted.

e These formulae are specific to the cylindrical equidistant projection. They have
been written in full as an example of the information that is necessary for defin-
ing a projection: it is not possible in a volume such as this to quote full formulae
for all projections. It is to be assumed that the reader will have access to the nec-
essary formulae via software packages such as Arc/Info. Further comments on
this are given in Chapter 11.

e The formulae for a spheroid are a little more complex than those given above,
which were derived using a spherical Earth.

e The concepts of the origin of the projection and the false coordinates have for
convenience been introduced with reference to the cylindrical equidistant pro-
jection. It should be noted, however, that these are applicable to any projection,
and are a part of the set of parameters that define it.

8.2 Cylindrical equal area projection

It was shown in the previous section that the cylindrical equidistant projection distorts
parallels by the scale factor sec ¢ while leaving the meridians undistorted. It is there-
fore the case that areas have also been distorted. To compensate for this, an equal area
projection can be formed according to the rule of equation (7.4) that kmkp = 1. Since
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the parallels must be distorted by sec ¢ whatever happens (to fit onto the cylinder), this
leads to the conclusion that

ky = l =cos (8.13)
kp
Hence each small section of each meridian is multiplied by cos¢ as it is ‘unpeeled’

and placed on the projection. This leads to the result shown in Fig. 8.2. The features
to be noted are:

Figure 8.2 Cylindrical equal area projection.

¢ The scale factor in the equatorial region is close to 1 for both the meridians and
the parallels. This is a consequence of cylindrical projections being optimal for
the equatorial regions.

e The scale factor along the meridians is no longer equal to 1, and hence distances
cannot be measured directly off such a map. Furthermore, the correction to be
applied is not a straightforward one, as the scale factor is a function of latitude.

e The distortion of shape is now extreme towards the poles, as in addition to the
scale factor sec® along the parallels there is also the distortion cos¢ along the
meridians.

e Formulae can again be derived for converting between (¢,A) and (E,N), which
require the coordinates of the origin and the false coordinates as input.

A further refinement of this projection is to keep the equal area property but to
change the shape, by applying a further scaling of 0.5 along the parallels and 2 along
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the meridians. This leads to what is usually referred to as the Peters projection, often
used by international organisations for displaying the countries of the world in their
correct relative sizes. This is shown in Fig. 8.3. Note that the shape of features is now
correct in the mid-latitudes, as opposed to the equatorial regions with the conventional
form, and that there is less shape distortion near the poles.

Figure 8.3  Peters projection.

8.3 Mercator projection

One of the most important of all cylindrical projections is the conformal version,
which is given the particular name Mercator. In this projection, note again that
kp = secd, and hence, following equation (7.5),

This then leads to a projection such as that shown in Fig. 8.4. The general features of
the Mercator projection are:

* The scale factor at any point and in any direction is equal to secd, the secant of
the latitude.

¢ In consequence, the pole is now of infinite size and at infinite distance from the
equator, and hence cannot be represented on the projection.

e The fact that the meridians are parallel to each other and that the angles are
preserved makes this an ideal projection for navigation. A line drawn between
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Figure 84 Mercator projection.

two points on the map, A and B, as shown in Fig. 8.5, has a constant angle with
respect to the meridians (the azimuth from north),’ which can be read directly
from the map. This is then the azimuth that should be followed in navigating
from A to B. Such a line is termed a rhumb line or a loxodrome. It should be
noted, however, that this line is not the shortest route between A and B, owing
to the variation of scale factor within the projection. The shortest route between
the two, the great circle, will in fact be projected in most cases as a curved line.

Figure 8.5 Line of constant azimuth from A to B on a Mercator projection.
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—

¢ An individual map sheet (or navigation chart) usually represents a small part of
the world. Hence it has a scale factor that varies within the map according to
the range of latitudes it represents. A chart of the English Channel, for example,
might represent the range of latitudes between 49°N and 51°N. The scale factor
would then vary between sec49° and sec51°, or 1.52 and 1.59. It is appropriate
then to apply an overall scaling to the map so that the scale factor is on average
equal or closer to 1. This will not affect the shape of the map in any way, but
will make any distances read from it closer to their true values. In this example
an appropriate figure might be

1
T

so that the scale factor is now seen to vary between kpsec49° and kgsec51°, or
0.98 and 1.03, which means that a distance read from the map will be correct
to within 3%. Because the scale factor on the equator was originally equal to
1, it is now equal to kg. A software package such as Arc/Info, for example,
achieves this by asking the user to input the latitude of the parallel at which the
scale is true. If the user has a projection defined in terms of the scale factor on
the equator, kg, the appropriate parallel may be computed by knowing that the
general scale factor at any point, &, is now equal to kg sec§.

This concept of an overall re-scaling of the projection is, once again, one that has
been introduced for a specific example but which has a general application to all map
projections. It, or its equivalent, then forms another of the parameters required to
define a projection.

8.4 Transverse Mercator projection

All of the cylindrical projections discussed so far were formed by placing a cylinder
in contact with the equator and, although they are often used to portray the Earth as a
whole, they are therefore optimised for use in the equatorial regions.

Figure 8.6 Forming a transverse cylindrical projection.

For those parts of the Earth that do not lie close to the equator, an alternative is to
turn the cylinder onto its side and make the line of contact a particular meridian, as in
Fig. 8.6. A projection so formed is termed a rransverse cylindrical projection, and can
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be based on any chosen central meridian. Again, a set of rules can be proposed, to
produce equal area, equidistant, or conformal projections. By far the most important of
these is the transverse Mercator projection, an example of which is shown in Fig. 8.7,
which has been based on 0° as the central meridian. The important features of the
transverse Mercator projection are:

Figure 8.7 Transverse Mercator projection centred on 0°.

e The scale factor at each point is the same in any direction, and is given by
k = sec® (8.15)

where 8 is exactly analogous to ¢, except that it is the angular distance from
the central meridian, rather than the angular distance from the equator. Itis in a
sense a ‘sideways version of latitude’. Note that it is not the same as longitude,
but for a sphere can be found from the expression

0~ Akcosd (8.16)

e The meridians are no longer parallel to each other, and in fact are no longer
straight lines. The exception is the central meridian, which is a straight line. At
any general point, the meridian makes an angle with the central meridian (which
is also the direction of grid north) and this angle is termed the convergence, .
For the sphere,

Y~ Ahsiné (8.17)
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e Although Fig. 8.7 shows the transverse Mercator applied to the European re-
gion, it is more commonly used for a narrow band of no more than £+3° on
either side of the central meridian. This is principally due to its use as a sur-
vey projection, in which it is required to minimise the scale factor distortion at
the expense of the extent of coverage. In this situation, the scale factor varies
between 1 on the central meridian and 1.0014 on the edge of the projection, as
shown in Fig. 8.8. It is then possible to minimise the scale factor distortion by
once again applying an overall scaling ko, which in the context of the transverse
Mercator projection is now termed the central meridian scale factor. An ap-
propriate and typical value would be 0.9996, which means that the scale factor
across the projection now ranges from 0.9996 on the central meridian to 1.0010
(0.9996 sec 3°) on the edge. This is represented by the lower line in Fig. 8.8.

1.0025

1.002

1.0015

1.001 4

Scale factor
:

0.9995

0.999 -

0.9985

0598 - yen

Angular distance from central meridian
Figure 8.8 Scale factor for transverse Mercator projection.

The transverse Mercator projection is very widely used, and is particularly appro-
priate for regions with a large extent north—south but little extent east—west. It is, for
example, the projection used for the Ordnance Survey National Grid for maps (and
digital products) of Great Britain (Ordnance Survey, 1995b). In this case the relevant
parameters are given in Table 8.1.

The transverse Mercator is also the basis of a worldwide projection system known
as universal transverse Mercator (UTM). This system divides the world up into 60
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Table 8.1 Parameters for the OS and UTM projections

Projection Ao (o) False east (m)  False north (m) kg

OS National Grid 2°W  49°N +400000 —100000 0.9996012717
UTM (¢ > 0°) Zonal 0° +500000 0 0.9996

UTM (¢ < 0°) Zonal 0° +500000 +10000000 0.999 6

zones of longitude, each of width 6°. The zones are numbered from 1 starting at a
longitude of 180°E, and increase eastwards, as shown in Fig. 8.9. Thus the UK, for
example, lies in UTM zones 30 and 31.

Central Central Central
meridian meridian meridian
177°E 177°W 171°W
174°E 180°W 174°'W l 168° W
. h .
Longitude

Figure 8.9 The universal transverse Mercator system.

Within each zone, the central meridian lies along the centre of the zone. Thus,
UTM zone 1 has central meridian 177°W, for UTM zone 2 it is 171° W, and so on.
All other parameters of the UTM system are as given in Table 8.1. Specifying that
a projection is in UTM is therefore sufficient to define it completely, provided that
the zone number is specified. Regions that fall across UTM zones would be shown
on separate projections, with a discontinuity in between. Features falling across the
boundary would have approximately the same scale factor on either side, but would be
rotated with respect to each half since the convergence is in opposite directions (true
north is always fowards the central meridian).

Once again, the concept of zoning is one that has been introduced with reference
to a particular projection but which is generally applicable for others. Note that the
term Gauss—Kruger is also sometimes used for this projection.

8.5 Oblique Mercator projection

The final classification of cylindrical projections is used where a country or region to
be mapped is longer in one direction than another but is not aligned along a meridian
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or parallel. In this situation it is possible to formulate an oblique aspect of the Merca-
tor projection to minimise the scale factor, as in Fig. 8.10. In defining this projection

Figure 8.10 Forming an oblique Mercator projection.

it is necessary to specify the azimuth of the central line, as well as all the other param-
eters discussed earlier. The scale factor will now be proportional to the secant of the
distance from the centre line. An example of the use of this projection is in peninsu-
lar Malaysia, where the projection is termed the Hotine oblique Mercator, or rectified
skew orthomorphic.

A similar projection is the space oblique Mercator, which was developed for dis-
playing satellite imagery. In this projection, the centre line is the ground track of
the satellite. The formulae are complex, but again the scale factor is approximately
proportional to the secant of the distance from the centre line.



9
Azimuthal projections

9.1 General azimuthal projection

An azimuthal projection is formed by bringing a plane into contact with the sphere or
spheroid and formulating a set of rules for the transfer of features from one surface to
the other. Once again the properties preserved can be distance, area, shape, or others.

Because the point of contact between a sphere and a plane is a single point, the
scale factor distortion will be circularly symmetric. That is, the scale factor will be
proportional to the distance from the centre of the projection. An azimuthal projection
is therefore particularly suited to small ‘circular’ features on the surface of the Earth.

A special case of the azimuthal projection is where the point of contact is one
of the poles. This is referred to as a polar projection. This has the rather obvious
application of mapping the polar regions. A polar projection is formed by taking the
meridians off the sphere and placing them on the plane. The amount of distortion of
the meridians is a function of the type of projection, with the distortion of the parallels
following in consequence. The general form of the polar projection is therefore a set
of meridians radiating from the pole with no distortion of the angle at the centre. This
is shown in Fig. 9.1.

As with the cylindrical projections, the azimuthal projections can have a further
overall scaling applied to them, which has the effect of reducing the scale at the centre
to less than 1, and making the scale true along a circle centred on the projection point.
For the polar aspect this will make the scale true along a parallel of latitude away from
the pole.

9.2 Azimuthal equidistant projection

The azimuthal equidistant projection is formed by keeping the scale factor equal to
1 in the direction radial from the centre of the projection. In the case of the polar
equidistant projection, an example of which is shown in Fig. 9.2, this means that the
scale factor on the meridians, ky, is equal to 1. The scale factor along a parallel, p,
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0°

Figure 9.1 General form of the polar projection. Distances of parallels from the centre are a
function of the projection type.

is given as a function of latitude, ¢, by

|
_3"—9¢
" cosod )

and thus increases from 1 at the pole to 1.02 at 70° and 1.09 at 50°.

Figure 9.2 Polar equidistant projection.
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As a further example, Fig. 9.3 shows an azimuthal equidistant projection that is
centred on London. All distances from London are correct when measured from the
map; all other distances are too long.

—

SR
- .!\__:‘ = :: . + -

Figure 9.3 Azimuthal equidistant projection centred on London.

9.3 Azimuthal equal area projection

The azimuthal equal area projection is formed in a similar way to the azimuthal
equidistant projection, except that the scale factor of the lines radial from the cen-
tre is set to the inverse of the scale factor in the perpendicular direction. For the polar
aspect, shown in Fig. 9.4, this leads to scale factors of

km = cos(45° — 10) 9.2)
kp = sec(45° — 19) 9.3)
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Figure 9.4 The polar equal area projection.

9.4 Azimuthal stereographic (conformal) projection

The conformal version of the azimuthal projection is termed the azimuthal stereo-
graphic projection. This is for historical reasons, because this projection can be con-
structed graphically by projecting all points from a ‘viewing point’ on the opposite
side of the Earth from the centre of the projection.

As with all conformal projections, this one has a particular significance as it is
sometimes used as the basis for national mapping, being particularly appropriate for
small, compact countries or islands. The polar stereographic projection, shown in
Fig. 9.5, is used as a complement to the universal transverse Mercator beyond latitudes
+80°, when it is known as the universal polar stereographic projection (UPS). In this
usage, the scale at the pole (ko) is reduced to 0.994, which results in a standard parallel
(where scale is true) of 81°06'52.3". The false eastings and northings in this version
are

Ep = +2000000 m Np = +2000000m
In general the scale factor for the polar aspect is given by
k = kosec?(45° — 16) (9.4)

which is the same in any direction.
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Figure 9.5 Polar stereographic projection.

9.5 Gnomonic projection

One final form of azimuthal projection should be noted here, as although it is seldom
used in modern applications it does have some interesting properties. This is the
gnomonic projection, which is formed by projecting all points from the centre of the
Earth as shown in Fig. 9.6.

Equator

Figure 9.6 Formation of a gnomonic projection.

An example of the polar aspect is shown in Fig. 9.7. As would be expected, the
scale factor distortion becomes extreme away from the centre of the projection, reach-
ing a value of 2 along the meridian when the latitude is 45° and a value of 4 at a latitude
of 30°. It is clearly not possible to show an entire hemisphere with this projection.

The only advantage of this projection is that it is the only one where all great
circles (the shortest route between two points on a sphere) are shown as straight lines
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Figure 9.7 The (north polar) gnomonic projection.
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on the projection, and vice versa. This feature means that it can be used to plan the

shortest route between two points, although this role has largely been superseded by
computational techniques.



10
Conic projections

10.1 General conic projection

A conic projection is formed by bringing a cone into contact with the sphere or the
spheroid. In so doing it is seen to be touching the sphere along a parallel of latitude.
This line is known as the standard parallel of the projection.

Figure 10.1 Cones in contact with different standard parallels.

It can be seen from Fig. 10.1 that many different shapes of cone can be selected, all
resulting in a different standard parallel. The choice will depend upon which region
of the Earth is to be mapped, an appropriate standard parallel being one that passes
through the centre of the region.

The resultant form of the conic projection is that the meridians appear as straight
lines converging towards one of the poles. The angle between two meridians is a
function of the standard parallel, and can be expressed as

Y= Ahsino (10.1)
where AR is the difference in longitude of the two meridians and o is the latitude of
the standard parallel.

The conic is in fact a general case of projection, of which the cylindrical and
azimuthal projections are particular forms. In equation (10.1), as o tends towards 90°,
¥ tends to AA, which indicates that the angles between the meridians are true. This is
as in the polar projection, which is the equivalent of a completely flat cone touching
the sphere at the pole. Similarly, as o tends to 0°, y tends to 0°, which indicates that
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the meridians are parallel as in a normal conic projection. A cylinder is the equivalent
of a cone touching the equator.

These considerations are useful for gaining an insight into the nature of conic
projections, but should not be implemented in practice, as the formulae for the cone
are likely to break down under these extreme conditions.

The equivalent of an overall scaling is often used for conic projections, where it
is achieved by using rwo standard parallels as shown in Fig. 10.2. The effect is to
reduce the scale factor below 1 between the two standard parallels and increase it
above | outside them,

Figure 10.2 Formation of conic projection with two standard parallels.

Finally, it should be noted that for any conic projection the scale factor is entirely
a function of latitude, and these projections are therefore suitable for depicting regions
with a broad extent in longitude, particularly mid-latitude regions.

10.2 Conic equidistant projection

A conic equidistant projection preserves the scale factor along a meridian (ky = 1).
The parallels are then equally spaced arcs of concentric circles. The scale factor along
a parallel of latitude is given as a function of latitude ¢ (Snyder, 1987) by

_(G—¢n)
Ko cosd (102)
where
o= °°:¢! +6; (10.3)

- cosQ; —cosQ2 (10.4)

92—y
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and ¢; and ¢; are the two standard parallels. If only one standard parallel is used, n in
equation (10.4) is simply equal to sin9;.
An example of this projection is shown in Fig. 10.3.

Figure 10.3 Conic equidistant projection with standard parallels at 20 and 60° N,

10.3 Albers (conic) equal area projection

The equal area version of a conic projection is usually called Albers equal area. An
example of this for the European region is shown in Fig. 10.4.

It will be noted that the pole is shown in this projection as a circular arc, indicating
once again that shape has been sacrificed to keep the area undistorted. It should also
be noted, however, that the shape is not as badly distorted as in the cylindrical equal
area projection in Fig. 8.2. This is mainly a function of the region being projected: the
European area shown on these two maps is largely an area in mid-latitude with a large
east—west extent, which is more suited to a conic projection than to a cylindrical one.

10.4 Lambert conformal conic projection

The conformal version of the conic projections is usually named after Lambert, who
first developed it in 1772 (Snyder, 1987). The full name is the Lambert conformal
conic (LCC), but most references to a Lambert projection would usually be understood
to refer to this one (though not without some ambiguity). This is an extremely widely
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Figure 10.4 Albers equal area (conic) with standard parallels at 20° and 60° N,

used projection, and it is probably true to say that LCC and the transverse Mercator
between them account for 90% of base map projections worldwide.

Figure 10.5 Lambert conformal conic projection with standard parallels at 20° and 60° N.
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An example of the LCC is shown in Fig. 10.5. Because it is a conformal projection,
the meridians meet at a point that represents the pole. The example in Fig. 10.5 was
formed with the equivalent of a standard parallel at 40°. An LCC with a standard
paraliel at the equator would effectively be the same as a Mercator projection, with
the meridians parallel and never reaching the infinite pole; one with a standard parallel
at 90° would be the same as a polar stereographic projection. Examples near these
extremes are shown in Fig. 10.6.

An LCC projection may also be formed with two standard parallels, as with all
conic projections. In this case it is the equivalent of one standard parallel halfway
between, with an additional scaling applied. The usual arrangement for minimising
distortion is to have two standard parallels which are each é of the range of latitude in
from the extremes of the projection.

The formulae for LCC are complicated, but the expression for scale factor for the
case with one standard parallel and a spherical Earth can be quoted (Snyder, 1987) as

_ cos¢y tan” (;n+501)
~ cosytan® (1n+ 1¢)

(10.5)

where ¢, is the standard parallel and n = sin¢;.
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N (below).

Figure 10.6 LCC projections at 80° N (above) and 10°



11
Summary of information
required

11.1 Formulae

Examples of formulae for converting between geodetic coordinates and a projected
coordinate system were given in section 8.1 for the cylindrical equidistant projection.
Throughout this book, however, the assumption has been made that the vast majority
of users will not be called on to program specific algorithms into a computer, but will
have access to a wide variety of projections via a suite of software. ArcView, for exam-
ple, supports over 40 different projections. Some of these — for example UTM, UPS,
and the British National Grid — are true projected coordinate systems and include the
parameters in the specification; others are generic methods of projection and require
parameters as input. In such cases, the user will be restricted to choices of sub-sets
of these projections, being those defined by the particular parameters summarised in
section 11.2,

It may occasionally prove useful to have access to a set of programs for projection
computations that are independent of a particular application. One such is the PROJ.4
package from the United States Geological Service, which is available over the World
Wide Web (USGS, 1999).

If it is necessary to use a particular projection for which no computer program is
available, a standard work of reference must be consulted. One of the best available
18 Snyder (1987), which has already been referred to in some of the formulae given
in preceding sections. This work contains formulae in spherical and spheroidal form
for over 30 main types of projection, and includes a comprehensive set of worked
examples for each.

11.2 Parameters

Each projection is defined in terms both of the formulae needed for converting be-
tween geodetic and grid coordinates, and of the parameters of the projection which
are necessary as input for those formulae.
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Except for standard projections such as UTM and UPS, a projection is not defined
simply by its type. A transverse Mercator projection with central meridian 2° W, for
example, is completely different from a transverse Mercator projection with central
meridian 20° E.

Does it matter what the parameters are and what projection has been used? A
map may be digitised in projection coordinates and used in much the same way that a
paper map would be used. However, as soon as it is necessary to carry out any kind
of computation based on the information presented in the map, a knowledge of the
projection and its parameters is necessary. This may be a simple computation such
as the area of a feature on the map or the distance between two points, in which case
the projection may be ignored for low accuracy applications. But if it is required
to combine the data from the map with other data, perhaps from a satellite image
or from additional information obtained and referenced using GPS, it is necessary to
transform all information into a common coordinate system. For this, a knowledge of
the projection and its parameters is required.

Table 11.1 summarises the information that is usually necessary for each category
of projection. The meaning of these terms is summarised in Table 11.2.

Table 11.1  Parameters necessary to define each projection
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Projection

Cylindrical equidistant
Cylfndrical equal area
Mercator

Transverse Mercator
Oblique Mercator
Azimuthal equidistant
Azimuthal equal area
Azimuthal stereographic
Gnomonic

Conic equidistant
Albers equal area
Lambert conformal conic
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Table 11.2 Meanings of terms in Table 11.1

¢o Latitude of the origin. Not necessarily the same as ¢; for the conic projections

Ao Longitude of the origin. Equivalent to the central meridian for cylindrical and other
projections

Ey False eastings to be added to all coordinates. Equivalent to the eastings at the origin.
May alternatively be referred to as xg

Np  False northings to be added to all coordinates. Equivalent to the northings at the origin.
May alternatively be referred to as yg

ko  Overall scaling factor to be applied. May be referred to as the central meridian scale
factor for transverse Mercator. Not usually applied to conic projections, as its role is
performed by using two standard parallels

Ag  The azimuth of the centre line for oblique projections

01  The first (or only) standard parallel

02  The second standard parallel
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The question then remains of where to obtain this information. Some maps have
the name of the projection written in the margin, either specifically or in rather a vague
way (e.g. ‘conic with two standard parallels’). It is very unusual, however, to see the
actual values of the parameters printed on a map.

Most national mapping organisations publish the values of the parameters used
for their own map series, for example Ordnance Survey (1995b), but obtaining the
information may be a lengthy process. Nor does it mean that all maps of that country
will be printed in that projection: a publisher may have devised their own, and it is
also difficult to obtain this information. Again, a reference such as Snyder (1987) may
prove useful, though it is by no means comprehensive on this point. An alternative is
Jones (1990).

If it is not possible to obtain any information on the projection used, recourse may
be had to the techniques outlined in Chapter 12.



12
Direct transformations

12.1 Compatibility of coordinate systems

A frequently used alternative when two sets of data have to be combined into a single
datum and projection is to transform one into the other using points that are common
to both sets. If, for example, a satellite image is to be transformed into a ground
system which is represented by a given map, this may well be the case. In these
circumstances the projection and datum of the map are being adopted as the reference
.system, without having any detailed information on what its parameters actually are.

The procedure in the case of transforming an image to a map is often referred to
by remote sensors as warping. In fact, this is an approach that is applicable in other
areas as well, including the case where high precision GPS data is warped to a local
grid over a small area (as discussed in section 6.5) and in GIS.

To begin with, however, it must first be considered whether these techniques are
likely to produce a satisfactory result. That is, the limitations of such an approach
will be explored before dealing with the detailed procedures. It is easy to demonstrate
situations where any kind of two-dimensional transformation is not possible, by refer-
ence to two absurdly different projections (see Fig. 12.1). We are therefore concerned

Figure 12.1 No simple transformation can convert from one projection to the other.

with a consideration of how close the shapes of the two projections are. For some
situations, as in Fig. 12.1, the answer is obvious. It might be thought that it is always
possible to transform from one conformal projection to another, since by definition
the shape is preserved. This condition only holds true for small features, however,
because the scale factor varies within the projection and it is therefore impossible for
the shape of a large area to be preserved. An example of this is shown in Fig. 12.2,
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which represents the effect of a variation in scale factor within a projection on a square
of large dimensions.

Increasing scale factor

Figure 12.2  Scale factor variations within a projection.

The point of concern, then, is the variation in the ratio of scale factor between the
two projections across the area concemned. If this figure is largely constant, a simple
overall scale applied to one‘image or projection is likely to account for most of the
differences between the two. If, on the other hand, there is a large variation across the
area, it is questionable whether a simple transformation is likely to be adequate. The
key parameter to be considered here is the ratio of the scale factors between the two
projections and its variations within the area under consideration. This parameter can
be defined as

ka
_ 12.1
i (12.1)

where k4 is the scale factor in the target projection and kg is the scale factor in the
source projection, and r therefore represents the scale change in going from one pro-
jection to the other. If r is more or less constant across the area concerned, the two
projections have essentially the same geometry, and a simple two-dimensional simi-
larity transformation is likely to yield satisfactory results.

It is of course necessary to be a little more precise than the statement ‘more or less
constant’, however, so consider a situation in which the scale factor ratio across an area
ranges from a minimum of rpj, to @ maximum of ry,,. A similarity transformation
applied to the data set as a whole would in effect apply a mean scale factor ratio of
Fmean (that is, assuming that the control points used to derive the transformation were
evenly spread out over the whole area). The situation might, for example, look like the
one depicted in Fig. 12.3, in which the scale factor ratio increases from a minimum
down the left-hand side to a maximum down the right-hand side. If an overall scaling
18 applied in this example, the right-hand side of the area will be scaled along with all
other data by the ratio rpeay instead of the correct ratio ra. The mismatch along the
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v

T'min Fmean Vmax
Figure 12.3 Variation of scale factor ratio.

right-hand side of the image will then be given by

s:D(”“"‘" —1) (12.2)
Vmean

where D is in this case the length of the right-hand side, or more generally the dimen-
sion of the region where the incorrect scale factor is being applied. Equation (12.2)
therefore provides a reasonably good rule of thumb for the errors, €, that are likely to
result from the application of a similarity transformation.

This concept can be extended to a consideration of higher order transformations,
as covered in sections 12.2—-12.4. These can be thought of in conceptual terms as
‘tying’ two data sets together at a set of control points that are identifiable in both
systems. Exactly the same formula may be applied, but in this situation the extremes
rmin and rpax are to be thought of not across the whole area but between two control
points. The dimension D is then the distance between the control points, rather than
the dimension of the whole area. This is illustrated in Fig. 12.4.

Equation (12.2) will under these circumstances provide a rather conservative es-
timate of the likely error, as it takes no account of the non-linearity of the transfor-
mation. However, it does assume that a transformation appropriate to the number of
control points is being used. That is, there is nothing wrong with using half a dozen
control points to derive the parameters of a similarity transformation (in fact it is laud-
able), but it should not be assumed that the projection problems have been overcome
as a result.

A numerical example of an assessment of the compatibility of two data sets is
given in the case studies in sections 13.4 and 13.5.

12.2 Ground control

In order to determine the parameters of plane transformations (section 12.3) or the
unknowns in equations (12.3)—(12.13), it is necessary to use ground control points
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Fmax

Tmin

A

Figure 12.4 Control for higher order transformation.

(GCPs). A GCP must be recognisable in both data sets and must have known coordi-
nates in a suitable ground reference system. The number of points required depends
on the method used and is discussed in the relevant sections. GCP coordinates may
be obtained directly by survey measurement or from a map. In either case the coordi-
nates will be given in a reference system; this may be geodetic (latitude and longitude)
or cartesian (X, Y, Z) and it may be global based on the centre of the Earth, or local
based on a national or regional projection. It is always important that all coordinates
are given in the same system. Direct survey measurements may come from a survey
based on a local or national coordinate system, which in Great Britain will be the
Ordnance Survey National Grid, or they may come from the GPS.

Maps should be used with caution for determining GCPs. Map data at scales of
1:25000 and smaller is notoriously unreliable because of the many errors that may
have accumulated in the map production and map digitising process. These include:

e survey errors (in some parts of the world published maps may be based on
topographical sketches)

e drafting errors

e generalisation

® paper distortion

e errors in digitising a paper document for use in the validation process.

It is always necessary to take the accuracy of the data into account when using ground
control; it is particularly important when using map data.

12.3 Plane transformations

12.3.1 Applications and terminology

Distortions may be present in satellite images. If the relief of the ground is high or
oblique images are being used, techniques for correction must take into account the
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relief of the ground. For areas of low relief or for low resolution sensors, simpler
methods may be used. Similarly, any two digitised maps may be simply transformed
onto one another if the internal scale factor distortions are low. This section deals with
the correction of two-dimensional data.

The correction of data in two dimensions may be approached by applying a trans-
formation to the data and resampling it to produce a corrected image which gives a
best fit to the ground control used. The transformation may be based on a theoretical
consideration of the errors involved or selected on empirical grounds. The latter is the
method most commonly used to produce an image which is corrected to fit to a given
map projection.

A number of transformations are widely used and a brief description of the com-
mon ones is given here. The terminology used here will be that (x, y) is the coordi-
nate system before transformation, and (X, Y) is the coordinate system required after
transformation. For remote sensing applications, (x, y) represents an image coordinate
system; alternatively, it might represent GPS data in WGS84 that is to be transformed
into a local system. The coordinates (X, Y) are referred to as a ground coordinate or
local system.

12.3.2 Two-dimensional similarity transformation (four parameters)

This transformation is used to relate any two-dimensional rectangular coordinate sys-
tem to any other two-dimensional rectangular coordinate system. It preserves the
internal geometry of the transformed system, so it is ideal for comparing the geometry
of any two systems simply by determining the residuals and the root mean square er-
rors after transformation. For a given control point, this transformation is defined by
two equations:

X=ax-by+c (12.3)
Y=bx+ay+d (12.4)

Effectively, this transformation is performed by applying a scale factor, m, where

m=+a?+b? (12.5)

arotation angle, o, where
b
tanol = — (12.6)
a

and two translations (¢ and d).

The operations applied by this transformation (scale, rotation, and translations)
are the equivalent of projecting an image by any ordinary photographic enlarger onto
a map. It is used to give initial coordinates to the centre of a frame.

Similarly, the parameters of the transformation may be derived in a geographic
information system such as Arc/Info if common points can be identified between two
data sets. The parameters so derived are then applied to all the other peints in the data
set to be transformed.
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12.3.3 Two-dimensional affine transformation (six parameters)

The mathematical relationship for an affine transformation may be expressed by the
following equations:

X =ap+aix+azy az.7n
Y =bg+bix+byy (12.8)

An affine transformation enables an adjustment to be applied independently in each
direction, and is thus able to correct effects that have actual physical causes. Thus, for
remotely sensed scanner images, it corrects first-order distortions such as affinity due
to non-orthogonality and scale difference between scans and along track directions
which may be caused by Earth rotation and other geometric distortions. For digitised
maps it is able to correct for effects such as map shrinkage of a different size in each
direction.

At the same time, this kind of transformation may be able to correct for some of
the error caused not by physical effects but by differences of datum and map projection
between an image and a map or two different maps. It should be noted, however, that
it is not possible to isolate the magnitudes of physical and non-physical causes unless
calculations such as that outlined in section 12.4 have been carried out.

This transformation applies scale factors in the x direction (or scan direction for a
satellite image) of

my = 1/a} + b} (12.9)

and in the y direction (or flight direction for an image) of

my = /a3 + b3 (12.10)

as well as a factor of affinity:
F=" (12.11)

These may be determined by using ground control points or points common to both
data sets. Three ground control points, at least, are required.

12.3.4 Second-order polynomials (twelve parameters)

Polynomials in the form:

X=ay+ax+ay+ a3x2 +a4y2 + asxy (12.12)
Y = bo+ bix+ boy + b3x® + byy* + bsxy (12.13)

are used for correction of scanner data. If polynomials are used, great care must be
taken to ensure that a sufficient number of control points are available and that they
are distributed over the whole area to be transformed, as these transformations can
behave in an extremely unstable manner.
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A minimum of six GCPs is required to determine the transformation parameters,
although it is desirable to have more to build in checks. In addition to first-order
distortions, polynomials correct second-order distortions in satellite images caused by
pitch and roll, sub-satellite track curvature and scan line convergence due to Earth
rotation and map projection. They may also correct some of the distortions related
to the attitude variations along the flight path. Additional terms may be added to
equations (12.12) and (12.13) to correct for higher-order distortions; the need for care
in the use of control points is greater for higher orders.

This type of transformation is also used in geographic information systems such
as Arc/Info and ArcView to relate data sets that do not match after simple or affine
transformations have been carried out. The use of the equations is of course invisible
to the user; it is simply necessary to identify the minimum number of common points.
Again, care must be taken to use points that are well distributed over the area con-
cerned. Problems can arise if two data sets of very different geometry are being linked
in this manner, as the equations can become unstable. In such situations, recourse may
be had initially to the techniques outlined in section 12.4 as a first step.

This section has largely dealt with the use of two-dimensional transformations in
the forward sense: that is, equations have been quoted that will permit the transfor-
mation to be carried out if the parameters are known. The use of the reverse sense
has been implied: that is, the parameters must first be determined by least squares
from a knowledge of the coordinates in both systems of a set of common points. The
mathematical treatment of this subject is dealt with in Appendix section A3.

12.4 Unknown projections: measuring from maps

If the parameters of a projection are known, and the projection type is fully supported
by the software package being used, there is not going to be a problem in transforming
between projections. Likewise, it has been shown in the preceding section that, even
if the parameters of the projection are not known, a simple transformation may be
carried out if there is no significant change of shape between the ‘source’ and the
‘target’ data sets.

There remain some situations, however, in which the two data sets are not suffi-
ciently similar in shape, and the parameters of the projection are not known. In such
cases it may be possible to determine the parameters of the projection by an inspection
of the map itself. In the argument that follows it will generally be assumed that the
sphere, rather than the spheroid, is an adequate niodel for representing the coordinate
system. If the spheroid was actually used in determining the projection coordinates
this may lead to errors, but in most cases they will be errors that can be dealt with
through a simple affine transformation using common points.

The approach of this section is to “‘unravel’ the most serious distortions caused by
the projection, and to bring the coordinate system at least approximately into line with
the geometry of the ‘target’ data set. The first requirement is that the graticule should
be visible in the map, either explicitly printed or identifiable by tick marks around
the edge and in the middle. Without the graticule the map is essentially an abstract
concept, existing purely in projection space. On most large scale maps the grid will
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be printed. If the grid is not shown, this is not critical; a user could create a grid at an
appropriate scale.

The first step in treating a problem of this kind is to identify the type of projec-
tion by examining the graticule. Clues may be obtained by reading the sections on
individual projection types, but some of the main features are listed below.

o Farallel meridians aligned with grid north: these indicate that the map isin a
cylindrical projection. Within this category, further inspection may reveal the
following sub-categories:

— evenly spaced parallels of latitude: a cylindrical equidistant projection, as
there is no change in scale along the meridian

— parallel spacing decreases towards the poles: an equal area projection (as
the meridional scale factor is decreasing to take account of the increased
scale factors along parallels of latitude as the poles are approached)

— parallel spacing increases towards the poles: the Mercator projection (by
the converse argument to the one above, indicating conformality).

o Straight meridians converging, though not at a true angle; circular parallels:
that is to say, that the angle between any two meridians is not equal to (in fact
is less than) the angular difference between their longitudes. This indicates that
the projection is conic. Within this category, the following sub-sections apply:

— evenly spaced parallels: a conic equidistant projection (again, a constant
scale factor along the meridians indicates an equidistant projection)

— parallel spacing decreases away from the standard parallel: a conic equal
area projection. (If there are two standard parallels, the relevant fact is
whether the spacing decreases away from the mean of the two. See below
for an indication of how to determine the value of the standard parallel
without prior knowledge.)

— parallel spacing increases away from the (mean of the) standard parallels:
the Lambert conformal conic projection.

o Straight meridians converging at a true angle between meridians; circular par-
allels: that is, the angle between any two meridians is the same as their angular
difference in longitude. This indicates a polar projection (azimuthal with the
centre of the projection at one of the poles). Similar sub-categories as before
can be identified:

— evenly spaced parallels: a polar equidistant projection

— parallel spacing decreases away from the pole: an azimuthal equal area
projection

— parallel spacing increases away from the poles: a polar stereographic pro-
jection.

o Curved meridians: this is more of a problem, as several types of projection fall
into this category, including all oblique forms of azimuthal projection (except



Direct transformations 103

gnomonic) as well as the transverse Mercator and many of the more esoteric
projections. If the meridians are curved but all graticule intersections are right
angles, it is more likely to be a conformal projection. Over a small area it may
be difficult to determine whether, for example, the meridians are straight lines or
are curved. For a typical 1:50000 map sheet created on a transverse Mercator
projection, for example, the curvature of a meridian amounts to the equivalent
of around 1 mm off a straight line. However, large scale maps of a small area
are less likely to present a problem because they are more susceptible to the
kind of treatment outlined in the previous sections of this chapter,

Once the projection has been identified, the next stage is to determine the param-
eters that have been used, which can be done by taking measurements from the map.
The key point to note here is that although it is not possible to determine all the pa-
rameters of the projection by taking measurements off the map, the ones that it is not
possible to find are not usually necessary. For example, if no grid was shown on the
map and the user in effect creates an arbitrary one, it is not possible to determine the
correct false eastings and northings of the origin. On the other hand, the ‘substitutes’
that can be found are perfectly adequate if they are used consistently.

The most important parameters to be found are the ones that change the shape of
the projection. These are detailed below for the main categories.

o Normal cylindrical projections (contact at the equator): As a general rule, there
are no parameters that change the shape, as the projection is entirely defined
once it is identified as conformal, equal area or equidistant. The exception to the
rule is when a differential scaling has been applied to the meridians and parallels
as in the case of the Peters projection (section 8.2). This can be identified by
determining the scale factor in the two directions separately, as explained below.

e Polar projections: Again, the shape of the projection is entirely defined once it
has been identified as stereographic, equidistant or equal area.

e Conic projections: The shape of the projection is affected by the choice of
standard parallel (or parallels) and it is necessary to determine the value(s) used.
Choose two widely spaced meridians that are apparent on the projection, which
have a difference in longitude of A\, and measure the angle between them on
the map, B. Then by a rearrangement of equation (10.1) the standard parallel,
«Q, is given as

1B
= — 12.14
o = sin ( Ak) ( )
If two standard parallels have been used, this value will be the average of the

two. For conformal projections, any two that have a mean value o may be
chosen without affecting the shape.

This determines the origin of latitude. The origin of longitude is whichever
meridian is aligned with grid north (whether a pre-existing grid or one that has
been created for the purpose).
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o Transverse Mercator projection: The shape of the projection is determined by
the choice of central meridian. This may be found by measuring the conver-
gence, 7, or the angle between a meridian and grid north. By measuring this
angle at a point on the map whose latitude ¢ and longitude A are known, the
change in longitude AA between this point and the central meridian can be found
by rearranging equation (8.17) as

A= — (12.15)
sin¢
This gives the origin of longitude. The origin of latitude does not affect the
shape, and therefore cannot be found. An arbitrary value can therefore be as-
signed.

If required, an overall rescaling can be found by comparing a distance on the map
(for simplicity, one along a meridian) with the distance on the spherical model. Along
a meridian, the distance on the sphere is

T

Dsphcrc = RA(D@ (12.16)

The latitude difference, A¢, is expressed in degrees; R is the Earth radius (a suitable

value being 6371 km). This should be scaled by the appropriate map scale. The overall
rescaling is then

ko = Dprojection (12.17)
D sphere

This step is not actually necessary if the final step is for the map to be transformed
into a new data set using common points, and the scale factor determined as part of
this process. Finally, the false eastings and northings of the origin may be measured
directly from the grid. An example of this procedure is given in the case study in
section 13.5.



13
Case studies

13.1 Transformation of GPS data into a local datum

For this case study, data has been obtained by differential phase GPS observations,
and will be transformed into the local datum using common points. Figure 13.1 shows
the configuration of observations that were made, although the vectors have not been
shown to avoid cluttering the diagram. A network adjustment of the observations
indicates that the quality of the vectors is on average around 1.5 cm in plan and 2 cm
in height. A reasonable spread of control points has been achieved: it was not possible
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Figure 13.1 Configuration of observed points (Isle of Wight GPS 1998).

to surround the area completely as the south-east section of the map is in the sea. The
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control points used are Ordnance Survey triangulation pillars. Several bench marks
have also been included in the survey.

The initial transformation is a seven-parameter similarity transformation using
the four control points shown in the diagram: Arreton, Broomlands, Dunnose, and
Queen’s Bower. The transformation parameters that result from this are shown in
Table 13.1.

Table 13.1 Transformation parameters for seven-parameter similarity transformation

AX —531.928 m
AY 167.961 m
AZ —393.725 m
Rotation X  —1.166"

RotationY  —5.115"
RotationZ  1.382"
Scale factor  413.05 ppm

Note that

o The sizes of the translations are broadly in line with the transformations for the
whole of the UK shown in section 4.2.2, allowing for a local distortion of the
datum and the inaccuracy of the absolute GPS coordinates in WGS84.

o The rotations are not extreme.

o The scale factor (13 ppm) represents around 15 cm over this area, which is large,
but not entirely unexpected for this datum.

The next step is to check the residuals of the transformation: that is, the difference
between the original coordinates and the ones derived from the transformation. These
are shown in Table 13.2.

Table 13.2 Residuals of the similarity transformation

[ A h
Arreton —-0.0077 -0.0154 0.0017
Broomlands -0.0213 0.0098 0.0014
Dunnose —0.0079 0.0235 0.0027

Queen’s Bower  0.0368 -0.0179  —0.0057

As can be seen, these are generally below 2 cm, with the exception of the latitude
residual at Queen’s Bower, which is 3.7 cm. Mostly, these residuals are within the ac-
curacy of the GPS survey. Before proceeding further, however, it is worth examining
the extent to which an error in the control points would be noticeable by an examina-
tion of the residuals. To do this, an error is introduced into the eastings coordinate of
Broomlands, increasing it by 20 cm. The residuals that result from this transformation
are shown in Table 13.3.

The residuals are now rather larger in plan, typically around 5 cm, and this would
perhaps be sufficient to alert the user. It is clear, however, that there is still not suffi-
cient redundancy to isolate the problem to the coordinates of Broomlands.
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Table 13.3 Residuals using erroneous coordinate set

¢ A h
Arreton —0.0589 —0.0471 0.0019
Broomlands —-0.0219  0.0614 0.0014
Dunnose 0.0430 0.0386 0.0016

Queen’s Bower  0.0377 —0.0530 —0.0049

The necessity for redundancy is further illustrated by examining a situation with
only three control points: in this case, eliminating Queen’s Bower. The residuals for
the transformation using the correct coordinates are shown in Table 13.4.

Table 13.4 Residuals using correct coordinate set and only three points

o A h
Arreton 0.0064 —0.0198  0.0000
Broomlands —0.0125 0.0055 0.0002
Dunnose 0.0061 0.0143  —0.0002

The residuals here are smaller in plan, and much smaller in height. Clearly, as
neither the GPS data nor the control point coordinates have changed, this is a function
of the reduced redundancy. Using the incorrect data set, the residuals shown in Table
13.5 are obtained.

Table 13.5 Residuals using incorrect coordinate set and only three points

o A h
Arreton 0.0323 —0.0646 —0.0261
Broomlands 0.0110 0.0485 —0.0083
Dunnose —-0.0433 0.0161 0.0345

The residuals are larger, though not immediately registering a problem. The best
indication that something is amiss with this data comes from the fact that the scale
factor has now increased to around 24 ppm, although there is still no way of locating
the source of the problem. The moral here is to use as many control points as possible,
and to check whether the derived parameters are sensible numbers.

Returning to the original set of transformation parameters derived from the four
points and the correct data, these are now applied to the entire data set to determine
coordinates in the local datum. In this particular case, we have the advantage of hav-
ing observed several bench marks in the area, and so it is now possible to compare
the heights derived by the transformation with the known values. The comparison
is shown in Fig. 13.2, with the residuals representing the known heights minus the
transformed ones.

The residual values of the geoid (which are not actual geoid values, but what re-
mains after the shifts and rotations) do seem to exhibit a pattern, as they are almost all
negative and increasing from the north-east to the south-west before coming back to
fit again at Dunnose. In fact, the sizes of residuals are not entirely inconsistent with
errors in the GPS data, but the supposition that they are caused by geoid effects is
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Figure 13.2 Residual geoid values after transformation (Isle of Wight GPS 1998).

supported by the fact that they would fit in with a geoid being ‘drawn up’ under the
high ground to the south-west. A random pattern of residuals over this size of area
would almost certainly indicate data errors.

A possible next step is therefore to transform the coordinates using an interpolation
algorithm, as described in section 6.5. This essentially bypasses the classic approach
of first converting the grid coordinates to cartesian via the procedures outlined in pre-
vious chapters, and instead stretches the GPS data to fit the grid coordinates and the
heights as they are. This was carried out on the data set used in this example, and
resulted in a mean scale factor of —339 ppm. The primary reason for such a large
scale factor adjustment is the fact that no correction has been made for the projection.
Therefore in a transformation of this type the real differences of scale between the two
data sets (as found in the similarity transformation) have been masked by the much
larger effect of the projection scale factor. Although this type of transformation can be
used if no information is available on the projection, it does illustrate the advisability
of first carrying out a similarity transformation if at all possible.

In most commercial packages, it is possible to choose the amount of distortion
that is applied to the GPS data to make it fit onto the local control. In this instance,
an average amount of distortion was chosen. With only four control points spread out
widely across the area, it was not hard for the program to adjust the GPS data in two
dimensions to fit the local control almost perfectly, resulting in very small residuals. In
the height direction, the residuals are a function of the distance between bench marks
and the amount of distortion required to fit the GPS data onto the given heights. The
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largest height residuals are at those points where there is a large jump in the residual
geoid distortion compared with other points nearby.

The parameters derived from this transformation were applied to the whole data
set, and an alternative coordinate set derived for all points. As an illustration of the
effect of the different transformations, the coordinates of one point in the centre of the
network are shown in Table 13.6 for each transformation.

Table 13.6 Coordinates of Sandown Farm from the two transformations.

Eastings Northings  Height

Similarity transformation ~ 459467.603 85163.762  18.294
Interpolation 459467.585 85163.821 18.371
Difference 0.018 —0.059 —0.077

Which is the correct answer? This question is almost impossible to answer, and
this example simply illustrates the difficulty of finding coordinates in a distorted local
datum to any better than a couple of centimetres. Instead, another pair of questions is
posed:

¢ How important is it for the GPS results to be in sympathy with local mapping?

¢ How important is it for the GPS results to be easily integrated with new terres-
trial observations?

In most cases the answer to the first question is ‘just to a few centimetres’, and the
answer to the second question is ‘quite important’. That is, an EDM traverse run
between two of the new control points provided by GPS should not end up with large
misclosures, and neither should runs of levelling.

The most appropriate solution in many cases is a hybrid of the similarity trans-
formation and the interpolation, using the former for the plan and the latter for the
height. This has the advantage of making the minimum change in the plan shape, thus
allowing the new GPS control points to fit in well with new traverses. For height, the
interpolation usually gives a better approximation of the distortions of the geoid, and
is therefore more likely to fit in with new levelling. Some commercial packages allow
this hybrid combination to be performed as a single operation.

13.2 A projection for Australia
13.2.1 The problem

Base maps of Australia are produced on a different projection or series of projections
for each individual state. This is due to the fact that the original survey work had to
be computed on projections that kept the scale factor distortion to a very low level. A
company has acquired the data and wishes to put it all onto one projection, in order
to avoid having discontinuities in the data. Area is not important, as this will be an
attribute on the database, but features should ‘look right’; that is, there should not be
any great distortion of shape. Design a suitable projection.
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13.2.2 A solution

If features are to ‘look right’, a conformal projection is called for in order to minimise
the distortion of shape. In selecting a suitable developable surface, it should also be
noted that the extent of the region to be mapped ranges in latitude from 45° S to 12° S,
and in longitude from 110° E to 160° E. The country could therefore be described
as a mid-latitude one with a broad spread in longitude, which leads to the suggestion
of a conic projection. As it has already been decided that a conformal projection is
required, the Lambert conformal conic projection is selected.

In selecting the required parameters, it should be remembered (see section 10.4)
that the scale factor distortion is minimised when the standard parallels are selected as
being é of the range of latitude in from the extremes of the projection. Since the range
of latitude is 37° (45° S — 12° S), this suggests 17° S and 39° S as suitable standard
parallels. A plot of the scale factor as a function of latitude is shown in Fig. 13.3, on
which the latitudes of the main population centres have been marked.
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Figure 13.3  Scale factor for LCC with standard parallels at 17° S and 39° S.

It may considered more important to minimise scale factor distortion in the area
of the main cities, an idea which is suggested by the fact that they happen to lie in a
fairly narrow band of latitude. This could be done by selecting standard parallels at
25° S and 40° S, but this would of course lead to more extreme distortion on the edge
of the projection.

With the paralleis as they are, the minimum value of scale factor is 0.98 and the
maximum is 1.03, which means a maximum distortion of 3%. Any areas measured
from the map will be distorted by the square of this value, or 6% at the most.

The central meridian, or the origin of longitude, is selected as the mean of the
extremes of longitude. This is 135° E. The maximum longitude difference from the
central meridian is then 25°, which gives an indication of the convergence. From
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section 10.1,
v= AXsina (13.1)

where in this case o is the mean value of the two standard parallels, or 28° S. The
maximum value of convergence is then around 12°, as shown in Fig. 13.4.

12°

Figure 13.4 Appearance of the meridians on the selected LCC projection.

The final parameters to be selected are the origin of latitude and the values of the
false coordinates. The choice of origin is not a critical decision, as it in no way affects
the shape of the projection: for convenience ¢g is then selected as 45° S, which gives
all points in the region a positive value of northings. The false northings can then be
selected as zero. Eastings are calculated as positive and negative quantities from the
central meridian. A false eastings of +2500000 m would be sufficient to make all
values positive.

13.3 Establishment of maritime boundaries on a
projection

This case study will examine the problems that are encountered when using a projec-
tion to compute distances between points. The particular application that will be used
is the establishment of maritime boundaries between states. A full description of the
basis on which these boundaries are established is given in Beazley (1994). For the
purposes of this example, it is sufficient to state that the main principle is the determi-
nation of the coordinates of points that are equidistant from the coastlines of different
states.

This computation can be carried out exactly by using ellipsoidal coordinates. The
algorithms used are complex, however, and not all GIS packages support their use.
The process is made considerably easier if it is possible to use projection coordinates
with no significant loss of accuracy. To begin with, a comment should be made about
how not to do this. Some GIS packages allow the data to be displayed in what are
termed ‘geographical coordinates’. In reality this is nonsensical, as the very fact that
the data are displayed on a flat screen implies that they are in a projection of some sort.
This projection in fact appears as one in which the meridians and parallels are straight
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lines with equal spacing, which was shown in section 8.1 as the cylindrical equidistant
projection. In this case the scale factor is true along the meridians and equal to sec ¢
along the parallels. In a region such as the North Sea, at an average latitude of around
55° N, this translates as scale factors of 1.0 north—south and 1.74 east-west: this is
certain to lead to some very wrong results.

A more appropriate approach is to design a projection specifically for use on this
problem. Following similar arguments to those in section 13.2, a Lambert conformal
conic projection is chosen with standard parallels at 51.5° N and 57.5° N. The scale
factor for this projection varies within the area of interest between a minimum of
0.9986 and a maximum of 1.0017,as shown in Fig. 13.5. In presentational terms this is
a very small variation, but the requirements for computation are rather more exacting.
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Figure 13.5  Scale factor in chosen projection (L.CC).

Figure 13.6 shows a plot of the North Sea in the chosen projection, with an ex-
ample point P that is proposed as being equidistant between A on the coastline of the
UK and B on the coast of Norway. The scale factor at P in the direction of A is, by
the definition of a conformal projection, equal to the scale factor in the direction of
B. Unfortunately, this is not the case along the whole length of each line, as the scale
factor will vary with latitude.

Between P and A the latitude changes from 56.5° to 54.5°, and therefore the scale
factor variation is between 0.9992 and 0.9986. As a sufficient approximation the mean
scale factor over the length of the line can be taken as the mean of these two values,
or 0.9989. Between P and B the latitude change is from 56.5° to 58.5°, with the scale
factor changing from 0.9992 to 1.0011. By a similar argument, the mean scale factor
of the line is taken as 1.0002.

The approximate length of the lines PA and PB is 300 km. If this is the apparent
length of the lines on the projection, Table 13.7 shows how the actual lengths of the
lines differ.
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Figure 13.6 The North Sea in the chosen LCC projection.

Table 13.7 Actual and projected distances for sample point
Line Projection distance (S km) Scale factor (k)  Actual distance (S/k km)

PA 300 0.9989 300.330
PB 300 1.0002 299.940

Thus, two lines that appear equidistant on the projection actually differ by around
390 m. Although this level of accuracy may be sufficient for using the functionality of
a GIS package to determine the most appropriate key points on the coast, it is unlikely
to be sufficient for use in the final computation. In this case, it would be necessary to
carry out the computations using ellipsoidal formulae. For smaller areas, it possible
that a projection could be defined with sufficiently negligible variations to make the
use of ellipsoidal formulae unnecessary.

13.4 Two-dimensional transformation of satellite
imagery

The purpose of this case study is to examine the compatibility of two sets of data,
and to see the extent to which the distortions due to the use of projections affects the
accuracy that may be achieved through simple transformations.

In this example, a satellite image covering an area of around 60 km x 60 km is
available for an area in the west of Wales. Several control points are visible on the
image and can also be identified on a map of the area, and it is planned to carry out a
two-dimensional transformation.
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¥

To examine the geometrical compatibility of the two data sets (the image and the
map), the reasoning of section 12.1 is used. In that section, the concept of the scale
factor ratio, r, was introduced. In this case, we are not really concerned with the
projection distortions in the ‘source’ data set as, although a satellite image can be
conceived of as being in a projection of a special kind, it covers such a small area
that this effect is negligible. There will be distortions, but these will not be due to the
projection effect. We are therefore really concerned only with the variations of scale
factor in the underlying base map projection. Since the scale factor of the image is
effectively 1, the scale factor of the map, k, will play the same role as the scale factor
ratio, r.

The base map being used is an Ordnance Survey 1 : 25000 map, and is therefore
in the British National Grid, which is a transverse Mercator projection with the pa-
rameters given in section 8.4. This is illustrated in Fig. 13.7.
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Figure 13.7 Position of the image in the projection.

The area concerned is at a latitude of 52° N and a longitude of 4° W, so the min-
imum value of the angular distance from the central meridian (8y,,) is around 1.23°.
The other edge of the area concerned is around 60 km further away from the central
meridian, or 0.72°, so Bmay is about 1.95°. These figures could be worked out without
resorting to spherical trigonometry, by using the distances in kilometres and divid-
ing by 6400 to express the solution in radians. The scale factor in this area therefore
varies between a minimum of 0.999 83 and a maximum of 1.00008, which have been
computed using the secants of the maximum and minimum values of 0 and an overall
scaling of 0.9996. With a good spread of control points, applying a similarity trans-
formation to the image would be the equivalent of using a mean overall scaling, in this
case 0.99995. Using the expression given in section 12.1 for the errors that are likely
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to arise from the application of a similarity transformation gives

(13.2)

1.00008
- SO
e =60000 (0.99995 )

which amounts to 7.4 m.

This is therefore not likely to be a problem in this situation, particularly if the
pixel size is 10 m or more. In addition, if a similarity transformation does not lead to
problems of geometrical incompatibility between the two data sets, there will certainly
not be a problem when using the more complex transformations with multiple control
points to overcome the other distortions that will be present in the image. In fact,
this result could be said to be indicative of the general situation with satellite images:
when transforming onto conformal projections over areas of a few tens of kilometres,
and with pixel sizes of a few metres, there are unlikely to be problems resulting from
the projection.

13.5 Two-dimensional transformation of GPS data

Some GPS software packages permit the transformation of data into a local reference
system by a two-dimensional transformation, without having to enter the parameters
of the projection used. This may be because they are not known, or it may just be for
the convenience of the operator. It is not a procedure without risks, however, and this
case study will explore some of the problems. In theoretical terms, this is exactly the
same procedure as that carried out in the case study in section 13.4, except that the
accuracy requirements are much higher.

Let us consider initially a survey that covers an area of 10 km?, with the local
control in a transverse Mercator projection, and the area under consideration a distance
of 100 km from the central meridian. This is depicted in Fig. 13.8, with a set of four
control points spread out around the area. The extremes of the scale factor can then be
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Central
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Figure 13.8 Position of survey with respect to the projection.
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computed approximately as

100 110
knin = 0.9996 sec <——) , kmax = 0.9996 sec (——)

6400 6400
or 0.999722 and 0.999748 respectively. The mean scale factor that would be ap-
plied in a similarity transformation is 0.999735. Then, by the argument outlined in
section 12.1, the errors that would result from a similarity transformation are

0.99975

e =10000 (0.999735 -

]) =0.15m
So, at 15 cm, this is really an unacceptable error when compared with the accuracy
that can be obtained over this sort of distance with GPS.

Alternatively, if more control points were available across the region, a more com-
plex warping of the GPS data could be carried out. Figure 13.9 shows a situation with

an average spacing of 5 km between control points, a situation that is unlikely to be
improved upon in practice.

A A A
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Y

Figure 13.9 Additional control points used for warping transformation.

The scale factor between adjacent control points now ranges from 0.999722 to
0.999 735, with a mean of 0.999 729, Applying equation (12.2) once again, this time
with a distance of 5 km between points, gives

0.999735

&= 3000 (m‘

l) =0.031
In other words, an error of 3 cm, which is again unlikely to be acceptable.

In conclusion, this type of transformation should be used with caution on surveys
covering an area more than a couple of kilometres across. It is really suitable only for
fitting GPS data onto a local site grid that is unrelated to a national or state coordinate
systen.

13.6 Determining the parameters of an unknown
projection

This case study explores the situation where data from two different sources is to
be combined, with at least one of the sources being a map with unknown projection
parameters.
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Let us assume, then, that data for the coastal areas around the British Isles is avail-
able, and is stored in the Mercator projection with known parameters. Data for the
land areas has been digitised from a map that appears to be conic, but for which no
other projection information is available. The size of the area used for this illustra-
tion is large, but this will assist the reader in visualising the processes at work. The
appearance of the two data sets, as seen in Figs 13.10 and 13.11, is very different.

Initially, a similarity transformation is applied to the second data set, by matching
points that can be identified in both maps. The results of this are shown in Fig. 13.12.

This is so far a poor attempt to combine the two, but a further improvement is
next made by identifying many further common points and applying a rubber sheeting
algorithm to pull the two together. The results of this stage are seen in Fig. 13.13.

This is an extremely unstable process for such radically different shapes, particu-
larly away from the tie points, and for some applications it may be a problem that real
changes in the coastline would be masked by the over-manipulation of the shape of
the data set.

As an alternative, let us assume that the second projection is in fact a Lambert
conformal conic (there is a slight increase in the distance between the parallels going
north). The angle between two meridians with a difference in longitude AA of 7.5°
was measured as 5.45°. Then rearranging equation (10.1) gives

. Y 545
sing = N (13.3)
Hence the standard parallel can be inferred as being 46.5° N. Alternatively, this could
be represented by two standard parallels an equal distance either side of this, say at
40° and 53° N.

These are the most fundamental parameters to be obtained, as they are the only
ones that will have an effect on the shape of the map. The other parameters required
can then be selected in a more or less arbitrary fashion. Having done this, it is then
possible to convert the projection coordinates into geodetic ones, and then to re-project
the data using the known parameters of the first projection.

The two data sets are again combined through a similarity transformation, and the
results shown in Fig. 13.14. Although the match is still not perfect, this is a much
more satisfactory starting point for applying more complex transformations through
rubber sheeting: this will be a far more stable process, and real discrepancies in the
two data sets will be far more apparent.
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Figure 13,10 Data set in Mercator projection.
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Figure 13.11 Data set in conic projection.
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"Figure 13.12 The two data sets combined with a similarity transformation.
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Figure 13.13 A further transformation is carried out by identifying common points and ap-

plying a rubber sheeting algorithm.
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Figure 13.14 LCC map re-projected to the Mercator projection, and then transformed onto
the original Mercator data via a similiarity transformation.



Appendix

A1 Spherical coordinates

This appendix is a summary of the formulae that are used to determine distances and
azimuths from spherical coordinates.

The shortest route between two points on the sphere is referred to as the great
circle. This can be defined by the intersection with the sphere of a plane that passes
through both the points and the centre of the sphere.

Let the coordinates of two points, A and B, be given as (¢a,As) and (¢p,Ag)
respectively. The great circle distance Lap between the two points is given as

cosLap = sinda sin g + cosda cosdp cos AL (AL.D)
where A) is the difference in longitude between the two points:
AL=Ap —Aa (Al1.2)

This gives an answer in angular units, which may be converted to distance by express-
ing the angle in radians and multiplying by an appropriate value for the radius of the
spherical Earth:

n
Likn) = 6371 5o L(degrees) (A13)

The azimuth of the point B from A is defined as the clockwise angle between the
meridian at A and the great circle, and is given by the expression

cosa tandp — sinha coSAA
COtAaB = ¢ q)sinAk o (Al.4)

A2 Basic geometry of the ellipsoid

A2.1 Introduction

The ellipsoid is the basic reference surface for the definition of geodetic coordinates.
With the use of GPS for most surveys that cover a large area, the need to carry out
computations using geodetic coordinates has greatly diminished, and most local sur-
veys will be carried out using projection coordinates that have been suitably corrected.

1A
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One of the few remaining uses for computations on the ellipsoid is in relation
not to actual observations but to the establishment of boundaries: this may be, for
example, between states or between oil concessions. Here it may be necessary, for
example, to compute the coordinates of a boundary line between two defining points
that lie several hundred kilometres apart. In such situations, the use of a projection is
inappropriate, and the computations cannot be carried out in cartesian coordinates.

What follows is by no means a comprehensive discussion of all aspects of geomet-
rical geodesy, but is a summary of some of the most useful concepts and formulae. A
fuller treatment may be found in references such as Bomford (1980).

A2.2 Normal sections and geodesics

The azimuth from point A to point B (both having been projected onto the surface of
the ellipsoid, if necessary) is defined firstly with reference to the plane that contains
the normai to the ellipsoid at point A and both points A and B. The angle between this
plane and the meridional section at A, when measured clockwise from north, defines
the normal section azimuth from A to B, as shown in Fig. A.1.

Normal section azimuth

]

Normal at B
Normal at A

Figure A.1 Normal section at A to the point B.

The normal section from A to B is not, in general, the same plane as that from B
to A. The intersection of these two planes with the surface of the ellipsoid therefore
establishes two separate lines. Except in special cases, neither of these two lines is
actually the shortest route between the two points.

The shortest route between two points on the surface of the spheroid is called the
geodesic. It is a complex line that cannot be described by the intersection of a plane
and the surface of the spheroid. As shown in Fig. A.2, it lies between the two normal
sections with an initial azimuth at A that is closer to the normal section from A than
the normal section from B in the ratio 2: 1.

This property also applies in reverse, in that the azimuth of the geodesic at the
point B will be closer to the normal section from B than to the normal section from A
in the same ratio.

The maximum distance between the two normal sections is a function of the dis-
tance between the two points, and ranges from a few centimetres for lines up to 100 km
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The geodesic

Normal section from B to A B

Normal section from A to B

173

Figure A.2 Normal sections and the geodesic.

to several metres for lines up to 1000 km.

A2.3 Forward computation of coordinates

‘Several formulae may be used to determine the coordinates of a point given the coordi-
nates of an initial point and the distance and azimuth. Some of them are less complex
than the one quoted here, but have limited accuracy over longer distances.

Given the coordinates of point A (¢pa,Aa) and a normal section azimuth (A) and
distance (L), it is required to find the coordinates of the point B, such that:

o8 =¢a+A0 (A2.1)
A =Aa+AL (A2.2)

Clarke’s ‘best formulae’ may be used for distances up to 1200 km with an accuracy of
within 2L5 of a part per million (Bomford, 1980). These formulae are:

2
e

€= - (A2.3)
rh = —€e cos? §a cos’ A (A2.4)
s = 3e(1 — r5) cosda sinda cos A (A2.5)

L oA+r) (LY A0a+34) (LY
b= A7 6 VA h 24 VA (A2.6)

VAY_ | _Dg_ g
(r)—l 58 -0 (A27)
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siny = sinda cosda + cosAsin® (A2.8)
Then
sinAA = sinAsinfsecy (A2.9)
_ _ 2(VAY sinda
tanop = (1 +¢) {1 e ( ’ ) oy }tan\y (A2.10)

All terms not specifically defined here are given in Chapter 2.

A2.4 Reverse computation of azimuth

A normal section azimuth, Aap, between two points A (¢4,Ap) and B (¢4,Ap), which
are of known coordinates, may be computed as follows:

—AX sinha + AY cosAa

A2.11
—AX sinda cosha — AY sinda sinAa +AZcosoa ( )

tanAag =

The cartesian coordinates of A and B are found from the equations in section 2.4,
and the convention for the differences is

AX = Xp — Xa (A2.12)

with similar terms for ¥ and Z.

A2.5 Determination of points on the geodesic

It is quite usuval that a boundary between two areas (mineral concessions or neigh-
bouring states) is defined as the geodesic between two points of given coordinates (on
a certain datum). It will then be necessary to determine the coordinates of points at
given intervals along the geodesic.

The fact that the geodesic is not a plane curve means that the methods for comput-
ing it are very complicated, usually involving the numerical expansion of an integra-
tion. Sharma (1966) gives a rigorous method for this. As an alternative, it is possible
within a limited accuracy to compute points on the geodesic by interpolating between
the normal sections. A suggested method follows.

1. Given the coordinates of the two end points, A and B, a distance L apart, com-
pute the normal section azimuths from each end by the use of equations (A2.11)
and (A2.12).

2. Compute the coordinates of a point on the normal section from A to B at a
distance D using equations (A2.1)~(A2.10). Let this point be called Pa.

3. Compute the coordinates of a point on the normal section from B to A at a
distance (L — D), using the same formulae. Let this point be called Pg. The
situation is illustrated in Fig. A.3.
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P

A

Figure A.3 Approximation of the geodesic.

It is now possible to interpolate the coordinates of the point on the geodesic from
the coordinates of the two points found so far if we bear in mind that the geodesic is
nearer to the normal section AB than to the section BA in the ratio 2: 1 at the point
A, halfway in between the two at the midpoint, and nearer BA than AB in the ratio
2:1 at the point B. Making an assumption of a linear change in the ratio, this gives
the coordinates of the geodesic point (¢g,Ac) as

0G = Op, + (Ppy — Op,) (i(?@) (A2.13)
A =hp, + (Apy — Ap,) (LJ%/L)) (A2.14)

This technique has an estimated accuracy of within 10 cm at distances up to 1000 km.

A3 Determination of transformation parameters by
least squares

A3.1 Introduction and least squares terminology

The purpose of this appendix is to bring together the mathematical processes for de-
termining the parameters of any transformation model by least squares, given the co-
ordinates in two different systems of a sufficient number of points. A basic familiarity
with the least squares process has to be assumed, but the essential equations are re-
capitulated here to establish the terminology. The notation in this appendix follows
that of Allan (1997b), and the specific application to transformation problems is based
on the approach of Cooper (1987).

The aim of the least squares process is, in general, to determine best estimates of a
set of unobserved parameters, x, from a set of observed parameters, s. The bold type
indicates that we are dealing here with vectors, containing several parameters. For
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this particular application, the unobserved parameters will usually be the parameters
of the transformation, and the observed parameters will be coordinate values.
The relationship between x and s is expressed via a functional relationship:

F(%:8§) =0 (A3.1)

where X represents the best estimate of x and § the best estimate of s.
Since in general we are dealing with non-linear transformations, the functional
relationship is linearised as follows:

oom oo OF oF
F(%;8) = F(%;8) + a—de+ gds (A3.2)

where X and § represent provisional values of the unobserved and observed parameters
respectively, and are related to the best estimates through the expressions

X=%+dx and §=$§+ds (A3.3)

In addition, the best estimates of the observed parameters are related to the obser-
vations themselves, g, by the expression

§=s+v (A3.4)

where the quantities v are described as the residuals.
Equations (A3.3) and (A3.4) can then be combined to express the vector ds in
terms independent of the best estimates as

ds=s—§+v (A3.5)
=l+v (A3.6)

In equation (A3.2), the functional relationship, F, will evaluate as zero when it is
applied to the best estimates of the observed and the unobserved parameters, as this is
the way that the relationship was first introduced in (A3.1). It is also the case that the
relationship will be zero when applied to the provisional values of the observed and
unobserved parameters, provided they are given as a consistent set. Thus, equation
(A3.2) can be simplified to

JF oF

——dx+ —ds=0 (A3.7)

Jx ds
For convenience, dx will henceforward be referred to simply as x, the vector of un-
knowns that must be added to the provisional values to obtain the best estimates.
Similarly, the vector ds is refered to as s, and is split into its component parts I + v.

Thus the equation now becomes

Ax+Cv=-Cl=b (A3.8)
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where
oF
A= x (A3.9)
and
C= B_F (A3.10)
Js

A and C are termed Jacobian matrices, and represent the partial derivatives of the
functional relationships with respect to the unobserved and observed parameters re-
spectively. More concisely, they are often called the design matrices. Their form will
be discussed in detail in relation to the different transformation models in the follow-
ing sections, but it should be pointed out here that they have been derived from a
linearisation that has the provisional values of the observed and unobserved param-
eters as its starting point. In evaluating the matrices, the provisional values of these
parameters should therefore be used.

In some situations it is possible to express a problem in such a way that the de-
sign matrix C reduces to the identity matrix 1. In such cases, equation (A3.8) can be
rearranged and expressed in the form

Ax=1+v (A3.11)

If the observation equations are given in this form, it can be shown (Allan, 1997b) that
the solution that minimises the weighted sum of the squares of the residuals, v, is

x=(ATWA)~L(ATWI) (A3.12)

where W is an appropriate weight matrix.
Alternatively, if the more general form of equation (A3.8) is used, it can be shown
(Allan, 1997b) that the solution now has the form

x= (AT(CW~'CT)~'A) " (AT(CW~'CT)"'b) (A3.13)

In the sections that follow, several different forms of transformation model will
be considered. For each of these, the functional relationship between observed and
unobserved parameters will first be defined, as will the weight matrix. The form of the
design matrices will then be derived. After this, the solution proceeds by application
of either equation (A3.12) or equation (A3.13).

Before proceeding to a consideration of the different transformation models, how-
ever, further consideration should be given to the formation of the vector b in (A3.8).
The implication of the way that it was derived is that it is first necessary to form the
vector I from a knowledge of the provisional values of the observed parameters. Al-
though for many problems in least squares this is not hard, in the area of coordinate
transformations it is often an unwieldy procedure. An alternative derivation of (A3.8)
will therefore be given (as in Cross, 1983) that obviates the need to form provisional
values of the observations.

This starts with the alternative definition

oF oF

F(%;8) = F(x;8) + 8_xdx+ Al (A3.14)
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which follows from the fact that the residuals, v, are defined as the differences between
the observations and the best estimates. This can then be simplified to

Ax+Cv=—F(ks)=b (A3.15)

Therefore b can be found by substituting the observations (observed coordinates) and
the provisional values of the unobserved parameters (transformation parameters) into
the functional relationship.

It should also be noted that, with the linearisation now starting from the provi-
sional values of the unobserved parameters and the observed values of the observed
parameters, it is these values that should be used in evaluating the matrices A and C.
This is not always stated explicitly in the derivations that follow, as it would make the
notation rather unwieldy, but it is implicit throughout.

A3.2 Two-dimensional transformations
A3.2.1 The similarity transformation

A set of coordinates in the system (x, y) is to be transformed into the system (X,
Y). Consider the simple similarity transformation shown in Fig. A.4, in which the
coordinates undergo a rotation 9, a scaling factor A, and shifts of Ax and Ay in the
axes.

> X
Figure A.4 Two-dimensional similarity transformation.

This transformation can be expressed by the following equations:

X = xAcosB —yAsin@+ Ax (A3.16)
Y = xAsin®+ yAcos6 + Ay

The first step is to recast these expressions into the form of a set of functional relation-
ships in the form required by equation (A3.1). At the same time, the terms in A and 0
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may be re-expressed as two new parameters, a and b. Thus

Fl=ax—by+Ax—X (A3.17)
FB=bx+ay+Ay—-Y

where
a = Acos, b =Asind (A3.18)

In solving for a and b, the original parameters A and 6 can subsequently be recov-
ered from

A=vVat+b? (A3.19)

0 =tan~! Z (A3.20)

The situation is further simplified if it is possible to say that the coordinates (x,y)
are effectively constants, and may be regarded as being without error. In this case, the
only observed parameters are the coordinates (X,Y), and the unobserved parameters
are a, b, Ax and Ay.

The design matrices A and C then have the form

(OR Oh OF  OF
% b 9Ar Ay
A= (A3.21)
oF, JF, oF odF

da  ob OAx Ay

o O
c= | & (A3.22)
o O
aX oY
These are then evaluated as:
_fx =y 1 0
A= <x y 0 1) (A3.23)
-1 0
C= ( 0 _1> (A3.24)

As the matrix C found above has the form —I, it can be seen that the general form
of the observation equations given in (A3.8) can be reduced to the special case of
equation (A3.11).

In fact, the matrices determined in (A3.23) and (A3.24) are only a part of the full
picture, as these have been derived for only one point. In general, there will be a
similar matrix for each point that is common to the two coordinate systems. Denoting
the partial matrix by the symbol A;, where

_f(x -y 10
A,_<xi S 1) (A3.25)
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and (x;,y;) are the coordinates of the ith point, the full design matrix for » points is
made up as follows:

Ay

A;
A= . (A3.26)

Ap

which is a (2n x 4) matrix.

The more general form of the transformation is the situation where it is not pos-
sible to assume that one set of coordinates is correct, and instead both (X, Y) and (x,y)
are assumed to be observed data with associated weights. The functional relationships

are the same as before, but they will now be written in a form that makes it explicit
that they are two equations out of a total set of 2n. Thus:

Py =ax;—byi+ Ax—X;
Fy =bxi+ayi+Ay-¥
As before, the sub-matrix A; is determined by differentiating with respect to the un-

observed parameters, and is exactly the same as previously:

o Xi —Yi 1 0
A'_(x,- y 0 1) (A3.28)

The sub-matrix C; is now different, however, as it includes the derivatives with respect
to all observed parameters, thus:
oFi; OF; OdJF; OJF;
ox;; oy oXy oYy
C = 1i V1i 1i 1i (A3.29)
oxy dyy 0Xy  OYy

which can be evaluated as

a —b —1 0
Ci—(b 2o _1> (A3.30)

The elements of the misclosure vector are determined from

F”(i( g) (axi - byi +AJC—X,>
bi=- o )= A331
l (Fz,‘(f(,s)) bxi—ayi+Ay—-Y; ( )

The full set of equations now fits together as follows:

Vi
A1\ [, Ci 0 0 - 0)|W by
Ar| (%, 0 C o - 0} b,
: +. .. ™M= (A3.32)
: XAx S Vi, :
An) \Fay 0 0 0 - G/ : b,

\vy,
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The dimensions of these matrices are
2nx4)(dx )+ (2nx4an)(dnx 1)=(2nx 1)

Note that each 0 in the C matrix is a sub-matrix of dimensions (2 x 4).

It is helpful to recall here that the equations derived above should be evaluated
using the provisional values of the unobserved parameters (the transformation param-
eters) and the observed values of the observations (the coordinate sets). The equations
could be made more explicit by writing terms such as

d, b, Ax, and Ay

for the transformation parameters, and
o o o [=]
Xiy Yis Xi) and Yl

for the observed parameters; in practice, little confusion can arise as these will in
general be the only values available.

Finally, to obtain a solution through the use of equation (A3.13), it is necessary to
introduce an appropriate weight matrix. The most i1aportant point about this is that it
must be consistent with the order of the observed parameters implied by the formation
of the C matrix and the v vector. Thus, the weight matrix W would take the form

5]251 Cxiyy 0 0 Ouzy \
G 0 0 oy
0 0 o} oxy O
wl=1| o0 0 oxy ©F 0 o (A3.33)
Oxixz Oyixy 0 0 01262
o},

where 0,251 is the variance of the observed coordinate of x|, and G,,y, is the covariance
between coordinates x; and y;.

This has been formed under the assumption that the two data sets are independent
of each other, and thus that all the covariances between the two sets are zero.

A3.2.2 Affine transformation

The affine transformation was introduced in Chapter 12. The basic equations have the
form

X=ap+ax+ay (A3.34)
Y =bo+bix+ by (A3.35)
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The functional relationships are therefore defined as

Fi=ap+aixi+ay:—X;
Foy =by+bixi+ by — Y,

The sub-elements of the design matrices are

A= a_F 1 2 w 0 0 O
"Tlox|\0 0 O 1 x
Ci— B_F a a -1 0
Tlos\bt b2 0 -1
and the misclosure vector is
b _ [Fi%8) _ _ (a0+auxi+ayi—X;
! le.(f(,g) bo+bi1xi+byy; - Y;
These elements fit together as

(¥

X
A [ Ci 0 0 - 0\|W
Al 0 C; o0 - 0]
: er+l . . !
: Xbo oo e Vi,
A,/ | %0 0 0 0 - CJ]| :
Xbs -
Vyn)

The dimensions of the matrices are

(2nx6)(6x 1)+ (2nx4n)(d4nx 1)= (2nx 1)

(A3.36)
(A3.37)
(A3.38)
(A3.39)
(A3.40)
b
b>
=1 (A341)
b,

Each 0 in C is again a (2 x 4) sub-matrix. The weight matrix is again as in (A3.33).

A3.2.3 Second-order polynomials

The equations for the two-dimensional transformation by second- order polynomials

were introduced in Chapter 12 as

X = ao+ayx+azy +azx® + agy* + asxy
Y = bo+ bix + boy + b3x® + bay* + bsxy

The functional relationships follow from these definitions:

Fii=ap+axi+axy; + Cl;;.)ci2 + a4y,2 +asx;yi — X;
Py = by + bix; + byyi + bax} + bay? +bsxyi - ¥;

(A3.42)
(A3.43)

(A3.44)
(A3.45)
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The sub-elements of the design matrices and the misclosure vector are

A_:a_lexiyix,?y%x,-yiOOO 0 0 0

T lex 00 0 0 0 0 1 x y x ¥ xw
(A3.46)

Ci = oF _ (@ +2axi+asy; ax+2asyitasxi —1 0

"7 | os by +2b3x; 4+ bsy; by+2bsyi+bsx; 0 —1

b= — Fii(%,$) —_ (ao+alxi-i-c12yz'+a3x,2 +asy; + asxy; _Xi)

! in(fi,g) b0+b1xi+b2y,~+b3x,2+b4y,-2+b5xiyi—Yi
(A3.48)

(A3.47)

The full equations are then constructed as in equation (A3.41), except that the
vector of unobserved parameters is

X' = (Yay Xa Xa 0 Xp, Xbs) (A3.49)
The dimensions of the matrices are

(2nx 12)(12x 1)+ (2nx4n){(dnx 1)=(2n x 1)

A3.3 Three-dimensional transformations
A3.3.1 The seven-parameter similarity transformation

The seven-parameter three-dimensional similarity transformation was introduced in
Chapter 4 in the form

X AX x
Y| =AY |+(1+MR |y (A3.50)
Z AZ X

where R is the rotation matrix given by

1 oz —0
R=1[-03 1 o (A3.51)
oy —04 1

and oy, o, and o3 are rotations about the x, y, and z axes respectively. The func-
tional relationships follow from the above definition, and are conveniently expressed
in matrix form as

F, = AX+ (1 +A)Rx—X (A3.52)
where
AX X X
AX = | AY X=\Y x=1|y (A3.53)
AZ VA Z
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The design matrix A is then developed as follows:

OF\ [OF OF OF OF OF
A=(E)o(E & & & of .
(ax) (ax 30, d05 3o an) (A3:59)

(e 0o (B)x @ (B )x an () )

The first element in equation (A3.53) can be evaluated as

1 o3 —0p X x4+ 03y — 02z
Rx=| —03 1 o yl=|-x+y+oz (A3.54)
o —o 1 Ogx— O y+z

The most common application of this transformation is to the conversion of coordi-
nates from one geodetic datum to another. In these situations, the rotations will be
very small (a few seconds of arc) and it will be the case that

x> o3y (A3.56)

and similar simplifications can therefore reduce (A3.55) to

x
Rx= [y (A3.57)
Z
The other terms in (A3.54) are evaluated as
3R 0 0 0O\ /x 0
(1+7&)(—)x:(1+k)R 0 0 1 y| ={0+MR] z
901 0 -1 0/ \x -
Y
03z + Ol2y 0 0
=(1+0)| z—ouy |=(+A)| z | =] z
oz—y -y -y
(A3.58)
oR ~z
(1+4) (E) X & ( 0 (A3.59)
X
oR y

The complete set of equations forms the sub-element of the design matrix A thus:

x 0 —z y»y 1 00
A=y z 0 —x 010 (A3.61)
0 0 1
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The sub-element of the design matrix C is formed from

1 o —-op -1 0 0

JF
C = [a—] = ((1 +A)R —I) =~ | —03 1 o 0O -1 0
® o -0y 1 0o 0 -1
(A3.62)
The misclosure vector is given by
b; = —Fy(%,8) = AX+ (1 + A)Rx— X (A3.63)
The matrix sub-elements combine in the full set of equations as
x), [ ¥x
Ar\ | Fe Ci 0 0 - 0)[™ b,
Ay | | ¥oo 0 C 0 - 0 i b,
: Yoy || . . .. fnf=|. (A3.64)
: XAx : oo e Vi :
A/ | xay 0 0 o0 - C, : b,
XAZ vy,

Thedimensions of these matrices are
(Bnx7)(Tx1)+Brxo6n)(6nx1)=(3nx1)

The alternative form of the seven-parameter similarity transformation is the one
that achieves a rotation about a local origin, Xg, by reformulating the transformation
equations as

X AX X0 X—X0
Y1 =[AY |+ [y ] +(1+MR|y—0 (A3.65)
Z AZ Z0 Z—20

The derivation of the least squares formulation of this transformation proceeds in a
very similar way to the original form. The functional relationship is altered to

F; = AX+x0+ (1 +M)R(x —x0) - X (A3.66)

The matrix C; remains the same as before, but A; becomes

X—Yo 0 —z+z9 y-yo 1 0 0
Ai=ly-y z—2 0 —x+x 0 1 0 (A3.67)
Z—20 —-Y+Yyo Xx—Xxp 0 0 0 1

The vector b is evaluated with the functional relationship in (A3.66), but all the ma-
trices are combined as in (A3.64).

For either of these two models, the weight matrix is a three-dimensional version
of that given in (A3.33) for the two-dimensional case.
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A3.3.2 Other similarity transformations

In some situations, a full seven-parameter similarity transformation is either not needed
or not possible with the existing data. It may be the case, for example, that only the av-
erage shift, or translation, between the datums is required. This would then be termed
a three-parameter transformation, with only (AX, AY, AZ) being determined.

To take another example, GPS data could be transformed onto a local datum whilst
preserving the scale of the survey by applying a six-parameter transformation solving
for (o, o2, a3, AX, AY, AZ). Each of these cases is simply derived as a special
case of the seven-parameter transformation, in which the columns of the matrix A
that correspond to the unwanted parameter are eliminated. Thus, the design matrix
for a solution of (AX,AY,AZ) alone is found by eliminating the first four columns of
(A3.61):

1 0
A=]0 1 (A3.68)
00

=)

Similarly, the design matrix for a six-parameter transformation involving three shifts
and three rotations is found by eliminating the first column of (A3.61):

0O —z y 1 00
A=z 0 —x 010
-y x 00 0 1

In each case, the design matrix C will remain the same as in (A3.62).

A3.4 Worked example

The way in which the solution is carried out is illustrated here with a worked example.
The one selected is a three-dimensional similarity transformation by the two different
models shown in section A3.3.1, although this will also serve to illustrate the general
principles for any transformation.

There are four points common to the two systems, and their coordinates are given
in Table Al. The standard error of each coordinate in system P is 0.01 m, and in
system Q is 0.02. For convenience, it will be assumed that all coordinates and points
are uncorrelated, and that the weight matrix is therefore diagonal. It has the form

w 0 0 O
0O w 0 O
W_OOWO
0 0 0 w

where each sub-matrix w represents one of the points and is given by

1/0.012
1/0.012
1/0.012
1/0.022
1/0.022
1/0.022
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Table A1

System P

Point X Y Z

A 4027 656.73 70296 4973741.92
B 4025033.77 14050.08 4975857.89
C 4010282.95 1399.85 4987786.36
D 4009387.42 1329568 4988482.31
System Q

Point X Y z

A 4027756.52 820.90 497397292
B 402513497 14168.85 4976087.46
C 4010381.77 1521.26  4988016.66
D 4009487.60 1341755 4988711.44

As a first approximation, the provisional values of all the transformation parameters
are set to zero, which will always be a valid assumption for any three-dimensional
geodetic datums.
Each element of the design matrix A is then formed according to (A3.61), using
 the observed values of the coordinates. The full matrix is:

4027656.7 0.0 —4973741.9 703.0 1 00
703.0 4973741.9 0.0 —4027656.7 0 1 O
49737419  -703.0 4027656.7 0.0 0 0 1
4025033.8 0.0 —4975857.9 14050.1 1 00
14050.1  4975857.9 0.0 —40250338 0 1 O
49758579 —14050.1 4025033.8 0.0 0 01
4010282.9 0.0 —4987786.4 1399.9 1 0 0
1399.9  4987786.4 0.0 —40102829 0 1 0
4987786.4 —1399.9 40102829 0.0 0 01
4009387.4 0.0 —4988482.3 13295.7 1 00
13295.7 49884823 0.0 —40093874 0 1 O
4988482.3 —13295.7 4009387.4 0.0 0 01

The sub-elements of the design matrix C are as defined in (A3.62), which with all
transformation parameters having provisional values of zero evaluates as

1 00 -1 0 0
¢=|/010 0 -1 0
001 0o 0 -1
These sub-matrices combine into a full C matrix of dimensions 12 x 24, as shown in
(A3.64).

The vector b is then evaluated from (A3.63), using the provisional values of the
transformation parameters (all zero in the first iteration) and the observed values of
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the coordinates. Thus, the first sub-vector, by, is given as

99.79 0 1 0 0\ /4027656.73 4027756.52
11794} = (0] +(140){0 1 0O 702.95 - 820.90
231.00 0 0 01 4973741.92 4973972.92

and the full vector, including a similar computation for each point, is

[ 99.79\
117.94
231.00
101.20
118.78
229.57
98.82
121.41
23031
100.19
121.87
229.13

All necessary matrices have now been formed, and it remains only to carry out the
matrix algebra solution of (A3.13) to determine the best estimates of the transforma-
tion parameters. This gives the solution shown in Table A2.

Table A2

A 2069173 =20.69 ppm
oy 990267 3rad  =2042"
02 499385 5rad  =10.30"
a3 0.00011886rad =24.52"

AX  264.75 =264.75m
AY  104.14 =104.13m
AZ  -73.00 =—73.00m

The solution so obtained is added to the provisional set of values (in this case zero)
to find the best estimates of the transformation parameters. If the two datums were
very different from each other, in theory a further iteration would be required in which
the current best estimates of the transformation parameters become the provisional
values. In most situations, however, this would not be required.

The alternative to this transformation model is that defined in equation (A3.66).
Although the full numerical derivation of this will not be given here, it is instructive to
examine the final result. This gives the transformation parameters as shown in Table
A3

What is noticeable about this set of parameters is that, although the scale and the
rotations are exactly the same as before, the translations are completely different. This
is due to the fact that the origin of the rotation in the first model was the centre of the
Earth, rather than being in the region of the points being transformed. Effectively this



Appendix 141

Table A3
A 206917 = 20.69 ppm
o 9.902677°  =20.42"
o 49938570 =10.30"
o3 0.00011886 =24.52"
AX 100 =100 m
AY 120 =120 m
AZ 230 =230 m

means that as the rotation origin is at such a great distance, its effect is very similar to
a translation. The true translation is therefore altered to take account of this.

Although it must be emphasised that the effect of these two models is exactly the
same (they would give the same coordinates if used to carry out a transformation) the
second approach usually gives a better insight into the physical differences between
the two datums: the translation found does correspond to the origin shift between the
two systems. In the first approach the translation is so dependent on the rotation, and
the rotation so dependent on small coordinate errors, that very different answers will
be found for different groups of points.

It must be stressed that the two sets of transformation parameters are not inter-
changeable: if a set of parameters is quoted, the model used must be given alongside
them.
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